Home
Class 12
MATHS
if f ((x- 4 ) /(x + 2 )) = 2 x + 1 ...

if ` f ((x- 4 ) /(x + 2 )) = 2 x + 1 , (x in R - { 1, - 2 }) ` , then ` int f(x) dx ` is equal to : (where C is constant of integration)

A

`12 log _e | 1 - x | - 3 x + c `

B

` -12 log _ e | 1 - x | - 3x + c `

C

` -12 log _e | 1 - x | + 3x +c `

D

` 12 log _e| 1 - x | + 3x + c `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of the function \( f(x) \) given that \( f\left(\frac{x - 4}{x + 2}\right) = 2x + 1 \). ### Step-by-Step Solution: **Step 1: Substitute the argument of \( f \)** Let \( X = \frac{x - 4}{x + 2} \). We need to express \( x \) in terms of \( X \). **Hint:** To find \( x \) in terms of \( X \), rearrange the equation \( X(x + 2) = x - 4 \). **Step 2: Rearranging the equation** From \( X(x + 2) = x - 4 \), we can rewrite it as: \[ Xx + 2X = x - 4 \] Rearranging gives: \[ Xx - x = -4 - 2X \] Factoring out \( x \): \[ x(X - 1) = -4 - 2X \] Thus, \[ x = \frac{-4 - 2X}{X - 1} \] **Hint:** Make sure to simplify the expression correctly. **Step 3: Substitute \( x \) back into the function** Now substitute \( x \) back into the function \( f \): \[ f(X) = 2\left(\frac{-4 - 2X}{X - 1}\right) + 1 \] This simplifies to: \[ f(X) = \frac{-8 - 4X}{X - 1} + 1 \] **Hint:** Combine the terms carefully, ensuring you have a common denominator. **Step 4: Simplifying \( f(X) \)** Combining the terms gives: \[ f(X) = \frac{-8 - 4X + (X - 1)}{X - 1} = \frac{-8 - 4X + X - 1}{X - 1} = \frac{-3X - 9}{X - 1} \] **Hint:** Factor out common terms if possible. **Step 5: Integrating \( f(X) \)** Now we need to integrate \( f(X) \): \[ \int f(X) \, dX = \int \left(-3 + \frac{12}{1 - X}\right) dX \] **Hint:** Break the integral into two parts for easier integration. **Step 6: Performing the integration** Integrating gives: \[ -3X - 12 \ln |1 - X| + C \] **Hint:** Remember to include the constant of integration \( C \). ### Final Answer: Thus, the integral \( \int f(x) \, dx \) is equal to: \[ -3X - 12 \ln |1 - X| + C \] Where \( X = \frac{x - 4}{x + 2} \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C is a constant of integration)

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

Let f ((x + 1 ) /( x - 1 )) = 2x + 1 , then integral int f (x ) dx is (x ne 1 ) .

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE MAIN (ARCHIVE)
  1. "If " int f(x)dx=Psi(x), " then " int x^(5)f(x)^(3)dx " is equal to "

    Text Solution

    |

  2. Evaluate:int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x +...

    Text Solution

    |

  3. if f ((x- 4 ) /(x + 2 )) = 2 x + 1 , (x in R - { 1, - 2 }) , ...

    Text Solution

    |

  4. If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - ...

    Text Solution

    |

  5. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  6. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  7. The value of the integral int(0) ^(pi//2) sin ^3 x dx is :

    Text Solution

    |

  8. The value of int(pi//4)^(3pi//4)(x)/(1+sin x)dx ….

    Text Solution

    |

  9. if x^(2) !=npi+1, ninN then int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(...

    Text Solution

    |

  10. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  11. Let nge2 be a natural number and 0ltthetaltpi//2. Then int((sin^ntheta...

    Text Solution

    |

  12. If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c, where c is contant of ...

    Text Solution

    |

  13. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |

  14. If int (x+1)/(sqrt(2x-1))dx=f(x) sqrt(2x-1)+C, where C is a constant o...

    Text Solution

    |

  15. The integral intcos(logex)dx is equal to (where C is a contant of int...

    Text Solution

    |

  16. The integral int(3x^13+2x^11)/((2x^4+3x^2+1)^4)dx is equal to (where C...

    Text Solution

    |

  17. int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constan...

    Text Solution

    |

  18. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  19. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  20. It int e^(sec x) (sec x tan x f (x) + (sec x tan x + sec^(2) x)) dx = ...

    Text Solution

    |