Home
Class 12
MATHS
If int (2x + 5 )/(sqrt(7 - 6 x - ...

If ` int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - 6x - x ^ 2 ) + B sin ^ ( -1) (( x + 3 )/( 4 ) ) + C ` (Where C is a constant of integration), then the ordered pair ` (A, B)` is equal to :

A

` ( -2, - 1) `

B

` (2 , -1 ) `

C

` ( -2, 1 ) `

D

` (2, 1 ) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{2x + 5}{\sqrt{7 - 6x - x^2}} \, dx \] we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{2x + 5}{\sqrt{7 - 6x - x^2}} \, dx \] To simplify the integration, we can manipulate the numerator. We can express \(2x + 5\) in a way that will help us use the derivative of the denominator. ### Step 2: Differentiate the Denominator The denominator is \(7 - 6x - x^2\). Let's find its derivative: \[ \frac{d}{dx}(7 - 6x - x^2) = -6 - 2x \] This means that: \[ d(7 - 6x - x^2) = (-6 - 2x) \, dx \] ### Step 3: Manipulate the Numerator Now, we can rewrite the numerator \(2x + 5\) as follows: \[ 2x + 5 = -(-2x - 5) = -(-2x - 6 + 1) = -(-2x - 6) + 1 \] So, we can write: \[ I = \int \frac{-(-2x - 6) + 1}{\sqrt{7 - 6x - x^2}} \, dx \] ### Step 4: Split the Integral This allows us to split the integral into two parts: \[ I = -\int \frac{-2x - 6}{\sqrt{7 - 6x - x^2}} \, dx + \int \frac{1}{\sqrt{7 - 6x - x^2}} \, dx \] ### Step 5: Substitute for \(t\) Let \(t = 7 - 6x - x^2\). Then, we can express \(dx\) in terms of \(dt\): \[ dt = (-6 - 2x) \, dx \implies dx = \frac{dt}{-6 - 2x} \] ### Step 6: Change of Variables Now, we can change the variables in the integrals. The first integral becomes: \[ -\int \frac{-2x - 6}{\sqrt{t}} \frac{dt}{-6 - 2x} \] And the second integral can be simplified using the identity for the inverse sine function. ### Step 7: Solve the Integrals After performing the integration, we find that: \[ I = -2\sqrt{7 - 6x - x^2} - \sin^{-1}\left(\frac{x + 3}{4}\right) + C \] ### Step 8: Compare with Given Expression We compare our result with the given expression: \[ A\sqrt{7 - 6x - x^2} + B\sin^{-1}\left(\frac{x + 3}{4}\right) + C \] From this comparison, we can identify: - \(A = -2\) - \(B = -1\) ### Final Answer Thus, the ordered pair \((A, B)\) is: \[ \boxed{(-2, -1)} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The value of int(x dx)/((x+3)sqrt(x+1) is (where , c is the constant of integration )

Evaluate: int1/(sqrt(7-6x-x^2))\ dx

Evaluate: int ( (6x+ 5))/( sqrt(6+ x-2x^(2)))dx

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

For a gt 0, if I = int sqrt((x)/(a ^(3) -x ^(3)))dx = A sin ^(-1) ((x ^(3//2))/(B))+ C, where C is any arbitary constant, then:

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE MAIN (ARCHIVE)
  1. Evaluate:int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x +...

    Text Solution

    |

  2. if f ((x- 4 ) /(x + 2 )) = 2 x + 1 , (x in R - { 1, - 2 }) , ...

    Text Solution

    |

  3. If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - ...

    Text Solution

    |

  4. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  5. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  6. The value of the integral int(0) ^(pi//2) sin ^3 x dx is :

    Text Solution

    |

  7. The value of int(pi//4)^(3pi//4)(x)/(1+sin x)dx ….

    Text Solution

    |

  8. if x^(2) !=npi+1, ninN then int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(...

    Text Solution

    |

  9. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  10. Let nge2 be a natural number and 0ltthetaltpi//2. Then int((sin^ntheta...

    Text Solution

    |

  11. If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c, where c is contant of ...

    Text Solution

    |

  12. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |

  13. If int (x+1)/(sqrt(2x-1))dx=f(x) sqrt(2x-1)+C, where C is a constant o...

    Text Solution

    |

  14. The integral intcos(logex)dx is equal to (where C is a contant of int...

    Text Solution

    |

  15. The integral int(3x^13+2x^11)/((2x^4+3x^2+1)^4)dx is equal to (where C...

    Text Solution

    |

  16. int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constan...

    Text Solution

    |

  17. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  18. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  19. It int e^(sec x) (sec x tan x f (x) + (sec x tan x + sec^(2) x)) dx = ...

    Text Solution

    |

  20. If lim(dx)/(x^(2)-2x +10)^(2) =A(tan^(-1)(x-1)/3)+(f(x))/(x^(2)-2x+10)...

    Text Solution

    |