Home
Class 12
MATHS
int("sin"(5x)/(3))/("sin"(x)/(2))dx is e...

`int("sin"(5x)/(3))/("sin"(x)/(2))dx` is equal to (where, C is a constant of integration)

A

` 2x + sin x + sin 2x + c `

B

` x + 2 sin x + sin 2x + c `

C

` 2x + sin x + 2 sin 2x + c `

D

` x + 2 sin x + 2 sin 2x + c `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin(5x/3)}{\sin(x/2)} \, dx\), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\sin(5x/3)}{\sin(x/2)} \, dx \] ### Step 2: Multiply and divide by \(2 \cos(x/2)\) We can multiply and divide the integrand by \(2 \cos(x/2)\): \[ I = \int \frac{2 \sin(5x/3) \cos(x/2)}{\sin(x/2) \cdot 2 \cos(x/2)} \, dx \] This simplifies to: \[ I = \int \frac{2 \sin(5x/3) \cos(x/2)}{\sin(x)} \, dx \] ### Step 3: Use the identity \(2 \sin A \cos B = \sin(A + B) + \sin(A - B)\) Using the identity \(2 \sin A \cos B = \sin(A + B) + \sin(A - B)\), we set \(A = 5x/3\) and \(B = x/2\): \[ 2 \sin(5x/3) \cos(x/2) = \sin\left(\frac{5x}{3} + \frac{x}{2}\right) + \sin\left(\frac{5x}{3} - \frac{x}{2}\right) \] Calculating the angles: \[ \frac{5x}{3} + \frac{x}{2} = \frac{10x + 3x}{6} = \frac{13x}{6} \] \[ \frac{5x}{3} - \frac{x}{2} = \frac{10x - 3x}{6} = \frac{7x}{6} \] Thus, we have: \[ I = \int \frac{\sin\left(\frac{13x}{6}\right) + \sin\left(\frac{7x}{6}\right)}{\sin(x)} \, dx \] ### Step 4: Split the integral Now we can split the integral: \[ I = \int \frac{\sin\left(\frac{13x}{6}\right)}{\sin(x)} \, dx + \int \frac{\sin\left(\frac{7x}{6}\right)}{\sin(x)} \, dx \] ### Step 5: Use known integrals Using the known integral results, we can evaluate these integrals: 1. \(\int \frac{\sin(kx)}{\sin(x)} \, dx = kx + C\) for \(k = \frac{13}{6}\) and \(k = \frac{7}{6}\). Thus, we can write: \[ I = \frac{13}{6} x + \frac{7}{6} x + C \] ### Step 6: Combine the results Combining the results gives us: \[ I = \frac{20}{6} x + C = \frac{10}{3} x + C \] ### Final Result Thus, the final result of the integral is: \[ \int \frac{\sin(5x/3)}{\sin(x/2)} \, dx = \frac{10}{3} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE MAIN (ARCHIVE)
  1. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  3. The value of the integral int(0) ^(pi//2) sin ^3 x dx is :

    Text Solution

    |

  4. The value of int(pi//4)^(3pi//4)(x)/(1+sin x)dx ….

    Text Solution

    |

  5. if x^(2) !=npi+1, ninN then int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(...

    Text Solution

    |

  6. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  7. Let nge2 be a natural number and 0ltthetaltpi//2. Then int((sin^ntheta...

    Text Solution

    |

  8. If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c, where c is contant of ...

    Text Solution

    |

  9. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |

  10. If int (x+1)/(sqrt(2x-1))dx=f(x) sqrt(2x-1)+C, where C is a constant o...

    Text Solution

    |

  11. The integral intcos(logex)dx is equal to (where C is a contant of int...

    Text Solution

    |

  12. The integral int(3x^13+2x^11)/((2x^4+3x^2+1)^4)dx is equal to (where C...

    Text Solution

    |

  13. int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constan...

    Text Solution

    |

  14. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  15. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  16. It int e^(sec x) (sec x tan x f (x) + (sec x tan x + sec^(2) x)) dx = ...

    Text Solution

    |

  17. If lim(dx)/(x^(2)-2x +10)^(2) =A(tan^(-1)(x-1)/3)+(f(x))/(x^(2)-2x+10)...

    Text Solution

    |

  18. If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C, where C is a constant of ...

    Text Solution

    |

  19. The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a c...

    Text Solution

    |

  20. Let alpha in (0, pi/2) be fixed. If the integral int(tan x + tan alpha...

    Text Solution

    |