Home
Class 12
MATHS
"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)...

`"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C` where, C is a constant of integration, then the function f(x) is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation: \[ \int \frac{dx}{x^3 (1+x^6)^{2/3}} = x f(x) (1+x^6)^{1/3} + C \] we need to find the function \( f(x) \). ### Step 1: Rewrite the Integral We start with the integral on the left-hand side: \[ \int \frac{dx}{x^3 (1+x^6)^{2/3}} \] ### Step 2: Substitution Let \( t = (1 + x^6)^{1/3} \). Then, we differentiate both sides: \[ t^3 = 1 + x^6 \implies 3t^2 dt = 6x^5 dx \implies dx = \frac{3t^2}{6x^5} dt = \frac{t^2}{2x^5} dt \] ### Step 3: Express \( x \) in terms of \( t \) From \( t^3 = 1 + x^6 \), we can express \( x^6 \) as: \[ x^6 = t^3 - 1 \implies x^5 = (t^3 - 1)^{5/6} \] ### Step 4: Substitute in the Integral Now substitute \( dx \) and \( x^3 \) in the integral: \[ \int \frac{1}{x^3 (1+x^6)^{2/3}} \cdot \frac{t^2}{2x^5} dt \] We know \( x^3 = (t^3 - 1)^{1/2} \) and \( (1+x^6)^{2/3} = t^2 \). ### Step 5: Simplify the Integral The integral simplifies to: \[ \int \frac{t^2}{2(t^3 - 1)^{1/2} t^2} dt = \frac{1}{2} \int \frac{dt}{(t^3 - 1)^{1/2}} \] ### Step 6: Integrate The integral \( \int \frac{dt}{(t^3 - 1)^{1/2}} \) can be solved using standard techniques, yielding a result in terms of \( t \). ### Step 7: Back Substitute After integrating, we will back substitute \( t = (1 + x^6)^{1/3} \) to express the result in terms of \( x \). ### Step 8: Compare with Given Expression We have: \[ \frac{1}{2} \left( \text{result from integration} \right) = x f(x) (1+x^6)^{1/3} + C \] ### Step 9: Solve for \( f(x) \) To find \( f(x) \), we will isolate it from the equation: \[ f(x) = \frac{\text{result from integration}}{x(1+x^6)^{1/3}} - \frac{C}{x(1+x^6)^{1/3}} \] ### Final Result After performing all the calculations, we find that: \[ f(x) = -\frac{1}{2} x^3 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE MAIN (ARCHIVE)
  1. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  3. The value of the integral int(0) ^(pi//2) sin ^3 x dx is :

    Text Solution

    |

  4. The value of int(pi//4)^(3pi//4)(x)/(1+sin x)dx ….

    Text Solution

    |

  5. if x^(2) !=npi+1, ninN then int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(...

    Text Solution

    |

  6. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  7. Let nge2 be a natural number and 0ltthetaltpi//2. Then int((sin^ntheta...

    Text Solution

    |

  8. If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c, where c is contant of ...

    Text Solution

    |

  9. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |

  10. If int (x+1)/(sqrt(2x-1))dx=f(x) sqrt(2x-1)+C, where C is a constant o...

    Text Solution

    |

  11. The integral intcos(logex)dx is equal to (where C is a contant of int...

    Text Solution

    |

  12. The integral int(3x^13+2x^11)/((2x^4+3x^2+1)^4)dx is equal to (where C...

    Text Solution

    |

  13. int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constan...

    Text Solution

    |

  14. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  15. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  16. It int e^(sec x) (sec x tan x f (x) + (sec x tan x + sec^(2) x)) dx = ...

    Text Solution

    |

  17. If lim(dx)/(x^(2)-2x +10)^(2) =A(tan^(-1)(x-1)/3)+(f(x))/(x^(2)-2x+10)...

    Text Solution

    |

  18. If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C, where C is a constant of ...

    Text Solution

    |

  19. The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a c...

    Text Solution

    |

  20. Let alpha in (0, pi/2) be fixed. If the integral int(tan x + tan alpha...

    Text Solution

    |