Home
Class 12
MATHS
If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2)...

If `int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C`, where C is a constant of integration, then g(-1) is equal to

A

`1 `

B

` - 1 `

C

` - (5 )/(2)`

D

` -(1)/(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 e^{-x^2} \, dx = g(x) e^{-x^2} + C \), where \( C \) is a constant of integration, we need to find the function \( g(x) \) and then evaluate \( g(-1) \). ### Step 1: Rewrite the Integral We start with the integral: \[ \int x^5 e^{-x^2} \, dx \] We can rewrite \( x^5 \) as \( x \cdot x^4 \): \[ \int x^5 e^{-x^2} \, dx = \int x \cdot x^4 e^{-x^2} \, dx \] ### Step 2: Use Substitution Let \( t = -x^2 \). Then, \( dt = -2x \, dx \) or \( dx = \frac{dt}{-2x} \). This gives us: \[ x^4 = (-t)^2 = t^2 \] Thus, the integral becomes: \[ \int x^5 e^{-x^2} \, dx = \int x \cdot t^2 e^{t} \cdot \frac{dt}{-2x} = -\frac{1}{2} \int t^2 e^{t} \, dt \] ### Step 3: Integrate by Parts Now we need to integrate \( \int t^2 e^{t} \, dt \) using integration by parts. Let: - \( u = t^2 \) and \( dv = e^{t} dt \) Then: - \( du = 2t \, dt \) - \( v = e^{t} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int t^2 e^{t} \, dt = t^2 e^{t} - \int 2t e^{t} \, dt \] ### Step 4: Integrate Again by Parts Now we need to integrate \( \int 2t e^{t} \, dt \) again by parts: Let: - \( u = 2t \) and \( dv = e^{t} dt \) Then: - \( du = 2 \, dt \) - \( v = e^{t} \) So: \[ \int 2t e^{t} \, dt = 2t e^{t} - \int 2 e^{t} \, dt = 2t e^{t} - 2 e^{t} \] ### Step 5: Substitute Back Now substitute back into our integral: \[ \int t^2 e^{t} \, dt = t^2 e^{t} - (2t e^{t} - 2 e^{t}) = e^{t}(t^2 - 2t + 2) \] ### Step 6: Substitute \( t = -x^2 \) Substituting back \( t = -x^2 \): \[ \int x^5 e^{-x^2} \, dx = -\frac{1}{2} e^{-x^2}((-x^2)^2 - 2(-x^2) + 2) + C \] This simplifies to: \[ = -\frac{1}{2} e^{-x^2}(x^4 + 2x^2 + 2) + C \] ### Step 7: Identify \( g(x) \) From the equation \( \int x^5 e^{-x^2} \, dx = g(x) e^{-x^2} + C \), we can identify: \[ g(x) = -\frac{1}{2}(x^4 + 2x^2 + 2) \] ### Step 8: Evaluate \( g(-1) \) Now, we need to find \( g(-1) \): \[ g(-1) = -\frac{1}{2}((-1)^4 + 2(-1)^2 + 2) = -\frac{1}{2}(1 + 2 + 2) = -\frac{1}{2}(5) = -\frac{5}{2} \] ### Final Answer Thus, the value of \( g(-1) \) is: \[ \boxed{-\frac{5}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If int(x)/(x+1+e^(x))dx=px+qln|x+1+e^(x)|+c , where c is the constant of integration, then p+q is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int tan^(5)xex=Atan^(4)x+Btan^(x)+g(x)+C , where C is constant of integration and g(0)=0, then

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c (where c is the constant of integration), then 9k is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE MAIN (ARCHIVE)
  1. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  3. The value of the integral int(0) ^(pi//2) sin ^3 x dx is :

    Text Solution

    |

  4. The value of int(pi//4)^(3pi//4)(x)/(1+sin x)dx ….

    Text Solution

    |

  5. if x^(2) !=npi+1, ninN then int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(...

    Text Solution

    |

  6. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  7. Let nge2 be a natural number and 0ltthetaltpi//2. Then int((sin^ntheta...

    Text Solution

    |

  8. If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c, where c is contant of ...

    Text Solution

    |

  9. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |

  10. If int (x+1)/(sqrt(2x-1))dx=f(x) sqrt(2x-1)+C, where C is a constant o...

    Text Solution

    |

  11. The integral intcos(logex)dx is equal to (where C is a contant of int...

    Text Solution

    |

  12. The integral int(3x^13+2x^11)/((2x^4+3x^2+1)^4)dx is equal to (where C...

    Text Solution

    |

  13. int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constan...

    Text Solution

    |

  14. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  15. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  16. It int e^(sec x) (sec x tan x f (x) + (sec x tan x + sec^(2) x)) dx = ...

    Text Solution

    |

  17. If lim(dx)/(x^(2)-2x +10)^(2) =A(tan^(-1)(x-1)/3)+(f(x))/(x^(2)-2x+10)...

    Text Solution

    |

  18. If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C, where C is a constant of ...

    Text Solution

    |

  19. The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a c...

    Text Solution

    |

  20. Let alpha in (0, pi/2) be fixed. If the integral int(tan x + tan alpha...

    Text Solution

    |