Home
Class 12
MATHS
The integral int(2x^(3)-1)/(x^(4)+x)dx ...

The integral `int(2x^(3)-1)/(x^(4)+x)dx` is equal to :
(Here `C` is a constant of integration)

A

` (1)/(2 ) log _ e ((x ^3 + 1 ) ^ 2 ) /(|x^3| ) + C `

B

` log _e (|x^ 3 + 1 | ) /( x ^ 2 ) + C `

C

` (1)/(2) log _e ( | x _ 3 + 1 | ) /( x ^ 2 ) + c `

D

`log _ e | (x ^ 3 + 1 )/( x ) | + c `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2x^3 - 1}{x^4 + x} \, dx, \] we can break it down into two separate integrals: \[ \int \frac{2x^3}{x^4 + x} \, dx - \int \frac{1}{x^4 + x} \, dx. \] ### Step 1: Simplifying the First Integral For the first integral, we can simplify the fraction: \[ \frac{2x^3}{x^4 + x} = \frac{2x^3}{x(x^3 + 1)} = \frac{2x^2}{x^3 + 1}. \] Thus, we rewrite the integral as: \[ \int \frac{2x^2}{x^3 + 1} \, dx. \] ### Step 2: Substitution for the First Integral Let \( t = x^3 + 1 \). Then, differentiating both sides gives: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2}. \] Substituting \( x^2 = \frac{t - 1}{x} \) into the integral: \[ \int \frac{2x^2}{t} \cdot \frac{dt}{3x^2} = \frac{2}{3} \int \frac{1}{t} \, dt = \frac{2}{3} \ln |t| + C = \frac{2}{3} \ln |x^3 + 1| + C. \] ### Step 3: Simplifying the Second Integral Now, we focus on the second integral: \[ \int \frac{1}{x^4 + x} \, dx. \] Factoring the denominator gives: \[ x^4 + x = x(x^3 + 1) = x(x + 1)(x^2 - x + 1). \] ### Step 4: Partial Fraction Decomposition We can express: \[ \frac{1}{x(x + 1)(x^2 - x + 1)} = \frac{A}{x} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 - x + 1}. \] Multiplying through by the denominator and equating coefficients will yield values for \( A, B, C, \) and \( D \). ### Step 5: Integrating Each Term Once we find \( A, B, C, \) and \( D \), we can integrate each term separately. The integrals will involve logarithmic functions for the linear terms and arctangent or logarithmic forms for the quadratic term. ### Step 6: Combining Results Finally, we combine the results of both integrals: \[ \int \frac{2x^3 - 1}{x^4 + x} \, dx = \frac{2}{3} \ln |x^3 + 1| - \left( \text{result of the second integral} \right) + C. \] ### Final Answer The final result will be: \[ \int \frac{2x^3 - 1}{x^4 + x} \, dx = \frac{2}{3} \ln |x^3 + 1| - \text{(result from the second integral)} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C is a constant of integration)

The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the constant of integration)

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-JEE MAIN (ARCHIVE)
  1. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  3. The value of the integral int(0) ^(pi//2) sin ^3 x dx is :

    Text Solution

    |

  4. The value of int(pi//4)^(3pi//4)(x)/(1+sin x)dx ….

    Text Solution

    |

  5. if x^(2) !=npi+1, ninN then int x sqrt((2sin(x^(2)-1)-sin2(x^(2)-1))/(...

    Text Solution

    |

  6. If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7))dx,(xge0)andf(0)=0, then the valu...

    Text Solution

    |

  7. Let nge2 be a natural number and 0ltthetaltpi//2. Then int((sin^ntheta...

    Text Solution

    |

  8. If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c, where c is contant of ...

    Text Solution

    |

  9. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |

  10. If int (x+1)/(sqrt(2x-1))dx=f(x) sqrt(2x-1)+C, where C is a constant o...

    Text Solution

    |

  11. The integral intcos(logex)dx is equal to (where C is a contant of int...

    Text Solution

    |

  12. The integral int(3x^13+2x^11)/((2x^4+3x^2+1)^4)dx is equal to (where C...

    Text Solution

    |

  13. int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constan...

    Text Solution

    |

  14. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  15. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  16. It int e^(sec x) (sec x tan x f (x) + (sec x tan x + sec^(2) x)) dx = ...

    Text Solution

    |

  17. If lim(dx)/(x^(2)-2x +10)^(2) =A(tan^(-1)(x-1)/3)+(f(x))/(x^(2)-2x+10)...

    Text Solution

    |

  18. If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C, where C is a constant of ...

    Text Solution

    |

  19. The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a c...

    Text Solution

    |

  20. Let alpha in (0, pi/2) be fixed. If the integral int(tan x + tan alpha...

    Text Solution

    |