Home
Class 12
CHEMISTRY
When the electron of a hydrogen atom jum...

When the electron of a hydrogen atom jumps from the n=4 to the n=1 state , the number of all pos - sible spectral lines emitted is :-

A

15

B

6

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of possible spectral lines emitted when an electron of a hydrogen atom jumps from the n=4 state to the n=1 state, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Initial and Final States:** - The electron is transitioning from the n=4 state (higher energy level) to the n=1 state (lower energy level). - Here, \( n_2 = 4 \) and \( n_1 = 1 \). 2. **Use the Formula for Spectral Lines:** - The formula to calculate the total number of possible spectral lines emitted is: \[ \text{Number of spectral lines} = \frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2} \] 3. **Substitute the Values:** - Substitute \( n_2 \) and \( n_1 \) into the formula: \[ \text{Number of spectral lines} = \frac{(4 - 1)(4 - 1 + 1)}{2} \] 4. **Calculate the Values:** - Calculate \( (4 - 1) \): \[ 4 - 1 = 3 \] - Calculate \( (4 - 1 + 1) \): \[ 4 - 1 + 1 = 4 \] - Now substitute these values back into the formula: \[ \text{Number of spectral lines} = \frac{(3)(4)}{2} \] 5. **Final Calculation:** - Multiply and divide: \[ \text{Number of spectral lines} = \frac{12}{2} = 6 \] ### Conclusion: The total number of possible spectral lines emitted when the electron jumps from the n=4 state to the n=1 state is **6**.
Promotional Banner

Topper's Solved these Questions

  • STRUCTURE OF ATOM

    VMC MODULES ENGLISH|Exercise ENABLE|50 Videos
  • STRUCTURE OF ATOM

    VMC MODULES ENGLISH|Exercise EFFICIENT|48 Videos
  • STOICHIOMETRY-II

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|43 Videos
  • SURFACE CHEMISTRY

    VMC MODULES ENGLISH|Exercise PRACTICE EXERCISE|9 Videos

Similar Questions

Explore conceptually related problems

When the electron in hydrogen atom jumps from the second orbit to the first orbit, the wavelength of the radiation emitted is lambda . When the electron jumps from the third to the first orbit . The wavelenth of the radiation emitted is

When the electron in an excited hydrogen atom jumps from an energy level for which n=5 to level for which n=2 ,the spectral line is obeserved in which series of the hydrogen spectrum?

The electron in the Hydrogen atom is excited to the 5^(th) orbit, the number of spectral lines it is expected to emit is

Number of spectral lines in hydrogen atom is

Suppose frequency of emitted photon is f_(0) when the electron of a stationary hydrogen atom jumps from a higher state m to a lower state n . If the atom is moving with a velocity v (lt lt c) and emits a photon of frequency f during the same transition, then which of the following statement are possible?

The electron in hydrogen atom in a sample is in n^(th) excited state, then the number of differrent spectrum lines obtained in its emission spectrum will be

The electron in the hydrogen atom jumps from excited state (n=3) to its ground state (n=1) and the photons thus emitted irradiate a photosensitive material. If the work function of the material is 5.1eV, the stopping potential is estimated to be: (The energy of the electron in nth state is E_(n)=-13.6//n^(2)eV )

The electron in the hydrogen atom jumps from excited state (n=3) to its ground state (n=1) and the photons thus emitted irradiate a photosensitive material. If the work function of the material is 5.1eV, the stopping potential is estimated to be: (The energy of the electron in nth state is E_(n)=-13.6//n^(2)eV )

If an electron of hydrogen atom moves from fourth excited state to ground state in Lyman series find the total number of spectral lines?

Using Bohr's postulates, derive the expression for the frequency of radiation emitted when electron in hydrogen atom undergoes transition from higher energy state (quantum number n_(i) ) to the lower state, ( n_(f)) . When electron in hydrogen atom jumps from energy state n_(i) = 4 to n_(f) = 3, 2, 1 , identify the spectral series to which the emission lines belong.