Home
Class 12
MATHS
Let f ((x + 1 ) /( x - 1 )) = 2x + 1...

Let ` f ((x + 1 ) /( x - 1 )) = 2x + 1 `, then integral ` int f (x ) dx ` is ` (x ne 1 )`.

A

`x^(2)+x+c`

B

`2x+In|x+1|+c`

C

`3x+4In|x-1|+c`

D

`2x+3(n|x+1|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of the function \( f(x) \) defined by the equation \( f\left(\frac{x+1}{x-1}\right) = 2x + 1 \). ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \frac{x + 1}{x - 1} \). We will express \( x \) in terms of \( t \). 2. **Expressing \( x \) in terms of \( t \)**: From the substitution, we can rearrange it: \[ t(x - 1) = x + 1 \implies tx - t = x + 1 \implies tx - x = t + 1 \implies x(t - 1) = t + 1 \implies x = \frac{t + 1}{t - 1} \] 3. **Finding \( f(t) \)**: Substitute \( x = \frac{t + 1}{t - 1} \) into the equation \( f(t) = 2x + 1 \): \[ f(t) = 2\left(\frac{t + 1}{t - 1}\right) + 1 = \frac{2(t + 1)}{t - 1} + 1 = \frac{2t + 2 + (t - 1)}{t - 1} = \frac{3t + 1}{t - 1} \] 4. **Integral of \( f(x) \)**: Now we need to find the integral: \[ \int f(x) \, dx = \int \frac{3x + 1}{x - 1} \, dx \] 5. **Simplifying the Integral**: We can split the fraction: \[ \frac{3x + 1}{x - 1} = 3 + \frac{4}{x - 1} \] Thus, the integral becomes: \[ \int \left(3 + \frac{4}{x - 1}\right) \, dx \] 6. **Calculating the Integral**: Now we can integrate term by term: \[ \int 3 \, dx + \int \frac{4}{x - 1} \, dx = 3x + 4 \ln |x - 1| + C \] ### Final Answer: \[ \int f(x) \, dx = 3x + 4 \ln |x - 1| + C \]

To solve the problem, we need to find the integral of the function \( f(x) \) defined by the equation \( f\left(\frac{x+1}{x-1}\right) = 2x + 1 \). ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \frac{x + 1}{x - 1} \). We will express \( x \) in terms of \( t \). ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

if f ((x- 4 ) /(x + 2 )) = 2 x + 1 , (x in R - { 1, - 2 }) , then int f(x) dx is equal to : (where C is constant of integration)

Let f(x)=log_(e)|x-1|, x ne 1 , then the value of f'((1)/(2)) is

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k , then

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

Let f(x) =inte^x(x-1)(x-2)dx, then f(x) decrease in the interval

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :