Home
Class 12
MATHS
The value of the integral underset(0)o...

The value of the integral ` underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx`, is

A

`(pi)/2+In2`

B

`(pi)/2-In2`

C

`pi-In2`

D

`pi+In2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the cotangent inverse function: \[ \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \] Thus, we can rewrite the integral as: \[ \int_0^1 \cot^{-1}(1 - x + x^2) \, dx = \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx \] ### Step 2: Simplify the Argument Next, we simplify \( 1 - x + x^2 \): \[ 1 - x + x^2 = x^2 - x + 1 \] This expression does not factor nicely, but we can proceed with the integral. ### Step 3: Use a Property of Integrals We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = 1 \), so: \[ \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx = \int_0^1 \tan^{-1}\left(\frac{1}{1 - (1 - x) + (1 - x)^2}\right) \, dx \] This simplifies to: \[ \int_0^1 \tan^{-1}\left(\frac{1}{x^2 + x}\right) \, dx \] ### Step 4: Combine the Integrals Now we can combine the two integrals: \[ I = \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx + \int_0^1 \tan^{-1}\left(\frac{1}{x^2 + x}\right) \, dx \] Let \( I_1 = \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx \) and \( I_2 = \int_0^1 \tan^{-1}\left(\frac{1}{x^2 + x}\right) \, dx \). ### Step 5: Evaluate the Combined Integral Notice that \( I_1 + I_2 \) can be simplified: \[ I_1 + I_2 = \int_0^1 \left( \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) + \tan^{-1}\left(\frac{1}{x^2 + x}\right) \right) \, dx \] Using the identity \( \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \) if \( ab < 1 \). ### Step 6: Find the Result After evaluating the integrals, we find: \[ I = \frac{\pi}{2} \] Thus, the value of the integral is: \[ \int_0^1 \cot^{-1}(1 - x + x^2) \, dx = \frac{\pi}{2} - \ln(2) \] ### Final Answer The value of the integral is: \[ \frac{\pi}{2} - \ln(2) \]

To solve the integral \( \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the cotangent inverse function: \[ \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos

Similar Questions

Explore conceptually related problems

int_0^1cot^(- 1)(1-x+x^2)dx

The value of integral underset(2)overset(4)int(dx)/(x) is :-

The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral overset(a)underset(0)int (1)/(1+e^(f(x)))dx is equal to

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//3))/(x^(4))dx is

The integral underset(1)overset(5)int x^(2)dx is equal to

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to