Home
Class 12
MATHS
int((x-4)^2)/x^3dx=?...

`int((x-4)^2)/x^3dx`=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(x-4)^2}{x^3} \, dx\), we will follow these steps: ### Step 1: Expand the numerator We start by expanding the expression \((x-4)^2\): \[ (x-4)^2 = x^2 - 8x + 16 \] Thus, we can rewrite the integral as: \[ \int \frac{x^2 - 8x + 16}{x^3} \, dx \] ### Step 2: Split the integral We can split the integral into three separate integrals: \[ \int \left( \frac{x^2}{x^3} - \frac{8x}{x^3} + \frac{16}{x^3} \right) \, dx = \int \left( \frac{1}{x} - \frac{8}{x^2} + \frac{16}{x^3} \right) \, dx \] ### Step 3: Integrate each term Now we will integrate each term separately: 1. \(\int \frac{1}{x} \, dx = \ln |x|\) 2. \(\int -\frac{8}{x^2} \, dx = -8 \int x^{-2} \, dx = -8 \left( -\frac{1}{x} \right) = \frac{8}{x}\) 3. \(\int \frac{16}{x^3} \, dx = 16 \int x^{-3} \, dx = 16 \left( -\frac{1}{2x^2} \right) = -\frac{8}{x^2}\) ### Step 4: Combine the results Now we combine the results of the integrals: \[ \ln |x| + \frac{8}{x} - \frac{8}{x^2} + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{(x-4)^2}{x^3} \, dx = \ln |x| + \frac{8}{x} - \frac{8}{x^2} + C \] ---

To solve the integral \(\int \frac{(x-4)^2}{x^3} \, dx\), we will follow these steps: ### Step 1: Expand the numerator We start by expanding the expression \((x-4)^2\): \[ (x-4)^2 = x^2 - 8x + 16 \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int((x-4)e^x)/((x-2)^3)\ dx

int((x^2-2x+3)/x^4)dx

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

int((x-4)^(3))/(x^(2))dx

int ((x^2-2x+3)/x^4)dx

int(x^2dx)/(4+x^2)

\int (3x^(2)+4x^(3)) dx

Evaluate: int_0^1|5x-3|dx (ii) int_0^pi|cosx|dx (iii) int_(-5)^5|x-2|dx (iv) int_(-1)^1e^(|x|)dx (v) int_0^2|x^2+2x-3|dx (v) int_1^4(|x-1|+|x-2|+|x-3|)dx (vi) int_(-1)^2|x^3-x|dx

int_(-4)^(5)(x-x^(3))dx is

int1/(x^4+3x^2+9)dx