Home
Class 12
MATHS
If f(x)=sqrt("cosec"^2x-2sinx cosx - 1/(...

If `f(x)=sqrt("cosec"^2x-2sinx cosx - 1/(tan^2x)) x in ((7pi)/4,2pi)`, then `f '((11pi)/6)=`

A

`(1-sqrt3)/2`

B

`(sqrt3-1)/2`

C

`(1+sqrt3)/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f'(\frac{11\pi}{6}) \) for the function defined as: \[ f(x) = \sqrt{\csc^2 x - 2 \sin x \cos x - \frac{1}{\tan^2 x}} \] ### Step 1: Simplify the expression inside the square root We start with the expression: \[ f(x) = \sqrt{\csc^2 x - 2 \sin x \cos x - \frac{1}{\tan^2 x}} \] Recall that: \[ \csc^2 x = \frac{1}{\sin^2 x} \quad \text{and} \quad \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \implies \frac{1}{\tan^2 x} = \frac{\cos^2 x}{\sin^2 x} \] Substituting these into the function gives: \[ f(x) = \sqrt{\frac{1}{\sin^2 x} - 2 \sin x \cos x - \frac{\cos^2 x}{\sin^2 x}} \] Combine the terms: \[ f(x) = \sqrt{\frac{1 - 2 \sin x \cos x \sin^2 x - \cos^2 x}{\sin^2 x}} \] ### Step 2: Use trigonometric identities Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ f(x) = \sqrt{\frac{1 - \cos^2 x - 2 \sin x \cos x}{\sin^2 x}} = \sqrt{\frac{\sin^2 x - 2 \sin x \cos x}{\sin^2 x}} \] This simplifies to: \[ f(x) = \sqrt{\frac{(\sin x - \cos x)^2}{\sin^2 x}} = \frac{|\sin x - \cos x|}{|\sin x|} \] ### Step 3: Determine the sign in the interval Since \( x \) is in the interval \( \left(\frac{7\pi}{4}, 2\pi\right) \), we know: - \( \sin x < 0 \) - \( \cos x > 0 \) Thus, \( \sin x - \cos x < 0 \) in this interval, so: \[ f(x) = -(\sin x - \cos x) = \cos x - \sin x \] ### Step 4: Differentiate \( f(x) \) Now we differentiate: \[ f'(x) = \frac{d}{dx}(\cos x - \sin x) = -\sin x - \cos x \] ### Step 5: Evaluate \( f'(\frac{11\pi}{6}) \) Now we need to evaluate this derivative at \( x = \frac{11\pi}{6} \): \[ f'\left(\frac{11\pi}{6}\right) = -\sin\left(\frac{11\pi}{6}\right) - \cos\left(\frac{11\pi}{6}\right) \] Using the unit circle values: \[ \sin\left(\frac{11\pi}{6}\right) = -\frac{1}{2}, \quad \cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Substituting these values gives: \[ f'\left(\frac{11\pi}{6}\right) = -\left(-\frac{1}{2}\right) - \frac{\sqrt{3}}{2} = \frac{1}{2} - \frac{\sqrt{3}}{2} \] ### Final Answer Thus, the final answer is: \[ f'\left(\frac{11\pi}{6}\right) = \frac{1 - \sqrt{3}}{2} \]

To solve the problem, we need to find \( f'(\frac{11\pi}{6}) \) for the function defined as: \[ f(x) = \sqrt{\csc^2 x - 2 \sin x \cos x - \frac{1}{\tan^2 x}} \] ### Step 1: Simplify the expression inside the square root ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

The value of F(x)=6cosxsqrt(1+tan^2x) + 2sinxsqrt(1+cot^2x) where x in (0,2pi)-{pi,pi/2,(3pi)/2} may be

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

f is a function defined on the interval [-1,1] such that f(sin2x)=sinx+cosx. bb"Statement I" If x in [-pi/4,pi/4] , then f(tan^(2)x)=secx bb "Statement II" f(x)=sqrt(1+x), forall x in [-1,1]

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to