Home
Class 12
MATHS
If |(z +4)/(2z -1)|=1, where z =x +iy. ...

If` |(z +4)/(2z -1)|=1,` where `z =x +iy.` Then the point (x,y) lies on a:

A

circle with center (4,0)

B

circle with center (-2,0)

C

circle with center (2,0)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \left| \frac{z + 4}{2z - 1} \right| = 1 \) where \( z = x + iy \), we can follow these steps: ### Step 1: Rewrite the equation using \( z = x + iy \) We start by substituting \( z \) into the equation: \[ \left| \frac{(x + iy) + 4}{2(x + iy) - 1} \right| = 1 \] This simplifies to: \[ \left| \frac{(x + 4) + iy}{(2x - 1) + 2iy} \right| = 1 \] ### Step 2: Use the property of modulus The property of modulus states that \( |A| = |B| \) implies \( |A|^2 = |B|^2 \). Therefore, we can square both sides: \[ \left| (x + 4) + iy \right|^2 = \left| (2x - 1) + 2iy \right|^2 \] ### Step 3: Calculate the squares of the moduli Calculating the left-hand side: \[ (x + 4)^2 + y^2 \] Calculating the right-hand side: \[ (2x - 1)^2 + (2y)^2 = (2x - 1)^2 + 4y^2 \] ### Step 4: Set the equations equal Now we set the two expressions equal to each other: \[ (x + 4)^2 + y^2 = (2x - 1)^2 + 4y^2 \] ### Step 5: Expand both sides Expanding both sides: \[ (x^2 + 8x + 16 + y^2) = (4x^2 - 4x + 1 + 4y^2) \] ### Step 6: Rearranging the equation Rearranging gives: \[ x^2 + 8x + 16 + y^2 - 4x^2 + 4x - 1 - 4y^2 = 0 \] Combining like terms: \[ -3x^2 - 3y^2 + 12x + 15 = 0 \] ### Step 7: Simplifying the equation Dividing the entire equation by -3: \[ x^2 + y^2 - 4x - 5 = 0 \] ### Step 8: Completing the square To complete the square for \( x \): \[ (x^2 - 4x) + y^2 = 5 \] Completing the square for \( x \): \[ (x - 2)^2 - 4 + y^2 = 5 \] Thus: \[ (x - 2)^2 + y^2 = 9 \] ### Conclusion This represents a circle with center \( (2, 0) \) and radius \( 3 \). ### Final Answer The point \( (x, y) \) lies on a circle with center \( (2, 0) \) and radius \( 3 \). ---

To solve the equation \( \left| \frac{z + 4}{2z - 1} \right| = 1 \) where \( z = x + iy \), we can follow these steps: ### Step 1: Rewrite the equation using \( z = x + iy \) We start by substituting \( z \) into the equation: \[ \left| \frac{(x + iy) + 4}{2(x + iy) - 1} \right| = 1 \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If z ne 1 and (z^(2))/(z-1) is real, then the point represented by the complex number z lies

The number of solutions of sqrt(2)|z-1|=z-i, where z=x+iy is (A) 0 (B) 1 (C) 2 (D) 3

The equation of the plane containing the line 2x+z-4=0 nd 2y+z=0 and passing through the point (2,1,-1) is (A) x+y-z=4 (B) x-y-z=2 (C) x+y+z+2=0 (D) x+y+z=2

If int(x^2-2)/((x^4+5x^2+4)tan^-1((x^2+2)/x))dx=log|f(z)|+c , then (A) f(z)=tan^-1z , where z=sqrt(x+2) (B) f(z)=tan^-1z , where z=x+2/x (C) f(z)=sin^-1z , where z=(x+2)/x (D) none of these

If arg(z-1)=arg(z+2i) , then find (x-1):y , where z=x+iy

If arg(z-1)=arg(z+3i) , then find (x-1):y , where z=x+iy .

If sec^-1 ((z-2)/i) lies between 0 and pi/2 , where z=x+iy then (A) xgt2,ygt1 (B) x=2,ygt1 (C) x=2,y=1 (D) xlt2,y=1