Home
Class 12
MATHS
In a DeltaABC, if B=90^(@), then tan^(2)...

In a `DeltaABC`, if `B=90^(@)`, then `tan^(2).(A)/(2)`=

A

`(a-b)/(a+b)`

B

`(b-c)/(b+c)`

C

`(c-a)/(c+a)`

D

`(b+c)/(b-c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^2\left(\frac{A}{2}\right) \) in triangle \( ABC \) where angle \( B = 90^\circ \). ### Step-by-Step Solution: 1. **Identify the Triangle**: Since \( B = 90^\circ \), triangle \( ABC \) is a right triangle with \( A \) and \( C \) as the other two angles. 2. **Use the Half-Angle Formula**: The half-angle formula for tangent is given by: \[ \tan\left(\frac{A}{2}\right) = \frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} \] 3. **Express Sine and Cosine in Terms of Angle A**: Using the half-angle formulas: \[ \sin\left(\frac{A}{2}\right) = \sqrt{\frac{1 - \cos A}{2}} \] \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{1 + \cos A}{2}} \] 4. **Substituting into the Tangent Formula**: Substitute the expressions for sine and cosine into the tangent formula: \[ \tan\left(\frac{A}{2}\right) = \frac{\sqrt{\frac{1 - \cos A}{2}}}{\sqrt{\frac{1 + \cos A}{2}}} \] 5. **Simplifying the Expression**: This simplifies to: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{1 - \cos A}{1 + \cos A}} \] 6. **Squaring the Tangent**: Now, we square the tangent to find \( \tan^2\left(\frac{A}{2}\right) \): \[ \tan^2\left(\frac{A}{2}\right) = \frac{1 - \cos A}{1 + \cos A} \] 7. **Finding Cosine of Angle A**: In triangle \( ABC \), we can express \( \cos A \) in terms of the sides of the triangle. If we denote the sides opposite to angles \( A \), \( B \), and \( C \) as \( a \), \( b \), and \( c \) respectively, then: \[ \cos A = \frac{b}{c} \] 8. **Substituting \( \cos A \) into the Expression**: Substitute \( \cos A \) into the squared tangent expression: \[ \tan^2\left(\frac{A}{2}\right) = \frac{1 - \frac{b}{c}}{1 + \frac{b}{c}} = \frac{c - b}{c + b} \] 9. **Final Result**: Thus, the final expression for \( \tan^2\left(\frac{A}{2}\right) \) is: \[ \tan^2\left(\frac{A}{2}\right) = \frac{c - b}{c + b} \]

To solve the problem, we need to find the value of \( \tan^2\left(\frac{A}{2}\right) \) in triangle \( ABC \) where angle \( B = 90^\circ \). ### Step-by-Step Solution: 1. **Identify the Triangle**: Since \( B = 90^\circ \), triangle \( ABC \) is a right triangle with \( A \) and \( C \) as the other two angles. 2. **Use the Half-Angle Formula**: ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|16 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

In any Delta ABC,angleB=90^(@) , prove that "tan"(A)/(2)=sqrt((b-c)/(b+c))

In DeltaABC , if /_C = 90^0 , then prove that tan (A/2) = sqrt((c-b)/(c+b)) = a/(b+c)

In DeltaABC," if " angleC=90^(@)," then " (a+c)/(b)+(b+c)/(a) is equal to :

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

In a DeltaABC," if " a^(2)sinB=b^(2)+c^(2) , then :

In a DeltaABC," if " a^(2)sinB=b^(2)+c^(2) , then :

ln a triangle ABC, B=90^@ then the value of tan(A/2)=

In a DeltaABC, sides a,b,c are inAP and (2)/(1!9!)+(2)/(3!7!)+(1)/(5!5!)=(8^(a))/((2b)!), then the maximum value of tan A tan B is equal to

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

If in a DeltaABC , c = 3b and C - B = 90°, then tanB=

OBJECTIVE RD SHARMA ENGLISH-SOLUTIONS OF TRIANGLES -Exercise
  1. In a DeltaABC, if B=90^(@), then tan^(2).(A)/(2)=

    Text Solution

    |

  2. If b=3,c=4,a n dB=pi/3, then find the number of triangles that can be ...

    Text Solution

    |

  3. If the data given to construct a triangle ABC are a = 5, b= 7, sin A=3...

    Text Solution

    |

  4. We are given b, c and sin B such that B is acute and b lt c sin B. The...

    Text Solution

    |

  5. In a A B C ,if=2,/B=60^0a n d/C=75^0 , then b= sqrt(3) (b) sqrt(6) ...

    Text Solution

    |

  6. In DeltaABC, if A = 30^@,b= 8,a=6, B = sin^-1 x, then x=

    Text Solution

    |

  7. If a=2, b=3, c=5 " in "DeltaABC, then C=

    Text Solution

    |

  8. In DeltaABC, if the sides are 7, 4sqrt(3) and sqrt(13) cm, prove tha...

    Text Solution

    |

  9. In a DeltaABC, if c = 2, A=120^(@), a=sqrt(6), then C=

    Text Solution

    |

  10. If A=30^0, a=7,a n db=8 in A B C , then find the number of triangles ...

    Text Solution

    |

  11. If a DeltaABC, b=2, C=60^(@), c=sqrt(6), then a =

    Text Solution

    |

  12. In DeltaABC, let a=5, b=4 and cos (A-B=(31)/(32)), then which of the f...

    Text Solution

    |

  13. In a DeltaABC, If A=30^@,b=2,c=sqrt3+1, then (C-B)/2 is

    Text Solution

    |

  14. In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1, then cos A=

    Text Solution

    |

  15. In a DeltaABC, if A=45^(@), b=sqrt(6), a=2, then B=

    Text Solution

    |

  16. In a triangle, the lengths of the two larger sides are 10 and 9, res...

    Text Solution

    |

  17. The sides of a triangle are 3x + 4y, 4x + 3y and 5x+5y units, where x ...

    Text Solution

    |

  18. In a Delta ABC, a,b,A are given and c(1), c(2) are two values of the ...

    Text Solution

    |

  19. In the ambiguous case, if a, b and A are given and c(1), c(2) are the ...

    Text Solution

    |

  20. In the ambiguous case, if a, b and A are given and c(1), c(2) are the ...

    Text Solution

    |

  21. The smallest angle of the triangle whose sides are 6 + sqrt(12), sqrt(...

    Text Solution

    |