Home
Class 12
MATHS
In a DeltaABC, If A=30^@,b=2,c=sqrt3+1, ...

In a `DeltaABC,` If `A=30^@,b=2,c=sqrt3+1,` then `(C-B)/2` is

A

`15^(@)`

B

`30^(@)`

C

`45^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((C - B)/2\) in triangle \(ABC\) where \(A = 30^\circ\), \(b = 2\), and \(c = \sqrt{3} + 1\). ### Step 1: Use the Law of Cosines to find \(a\) The Law of Cosines states: \[ a^2 = b^2 + c^2 - 2bc \cdot \cos(A) \] Substituting the known values: - \(A = 30^\circ\) (which gives \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\)) - \(b = 2\) - \(c = \sqrt{3} + 1\) Calculating \(c^2\): \[ c^2 = (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Now substituting into the Law of Cosines: \[ a^2 = 2^2 + (4 + 2\sqrt{3}) - 2 \cdot 2 \cdot (\frac{\sqrt{3}}{2}) \] \[ a^2 = 4 + 4 + 2\sqrt{3} - 2\sqrt{3} \] \[ a^2 = 8 \] \[ a = \sqrt{8} = 2\sqrt{2} \] ### Step 2: Use the Law of Cosines to find \(B\) Now we will find angle \(B\) using the Law of Cosines: \[ \cos(B) = \frac{a^2 + c^2 - b^2}{2ac} \] Substituting the known values: \[ \cos(B) = \frac{(2\sqrt{2})^2 + (\sqrt{3} + 1)^2 - 2^2}{2 \cdot 2\sqrt{2} \cdot (\sqrt{3} + 1)} \] Calculating \(a^2\) and \(b^2\): \[ a^2 = 8, \quad b^2 = 4 \] So, \[ \cos(B) = \frac{8 + (4 + 2\sqrt{3}) - 4}{4\sqrt{2}(\sqrt{3} + 1)} \] \[ \cos(B) = \frac{8 + 2\sqrt{3}}{4\sqrt{2}(\sqrt{3} + 1)} \] ### Step 3: Use the Law of Cosines to find \(C\) Now we will find angle \(C\) using the Law of Cosines: \[ \cos(C) = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting the known values: \[ \cos(C) = \frac{(2\sqrt{2})^2 + 2^2 - (\sqrt{3} + 1)^2}{2 \cdot 2\sqrt{2} \cdot 2} \] \[ \cos(C) = \frac{8 + 4 - (4 + 2\sqrt{3})}{8\sqrt{2}} \] \[ \cos(C) = \frac{8 + 4 - 4 - 2\sqrt{3}}{8\sqrt{2}} = \frac{8 - 2\sqrt{3}}{8\sqrt{2}} \] ### Step 4: Calculate \((C - B)/2\) Now we have angles \(B\) and \(C\). We can find \((C - B)/2\): \[ \frac{C - B}{2} = \frac{\text{angle C} - \text{angle B}}{2} \] Using the values we calculated for angles \(B\) and \(C\), we can find the final answer. ### Final Calculation After calculating \(B\) and \(C\) using the inverse cosine function, we can find: \[ C - B = \text{angle C} - \text{angle B} \] And then divide by 2 to get the final answer. ### Final Answer The final answer for \((C - B)/2\) is: \[ \frac{C - B}{2} = \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|16 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If a DeltaABC, b=2, C=60^(@), c=sqrt(6) , then a =

In a DeltaABC , if A=120^(@), b=2 and C=30^(@) , then a=

In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1 , then cos A=

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

In a DeltaABC , if a=18, b = 24, c=30 , find : tan (A/2) , tan( B/2), tan (C/2)

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In a DeltaABC , if a =2, B = 60°and C =75°, then b=

In a DeltaABC," if " a^(2)sinB=b^(2)+c^(2) , then :

In a DeltaABC," if " a^(2)sinB=b^(2)+c^(2) , then :

OBJECTIVE RD SHARMA ENGLISH-SOLUTIONS OF TRIANGLES -Exercise
  1. If b=3,c=4,a n dB=pi/3, then find the number of triangles that can be ...

    Text Solution

    |

  2. If the data given to construct a triangle ABC are a = 5, b= 7, sin A=3...

    Text Solution

    |

  3. We are given b, c and sin B such that B is acute and b lt c sin B. The...

    Text Solution

    |

  4. In a A B C ,if=2,/B=60^0a n d/C=75^0 , then b= sqrt(3) (b) sqrt(6) ...

    Text Solution

    |

  5. In DeltaABC, if A = 30^@,b= 8,a=6, B = sin^-1 x, then x=

    Text Solution

    |

  6. If a=2, b=3, c=5 " in "DeltaABC, then C=

    Text Solution

    |

  7. In DeltaABC, if the sides are 7, 4sqrt(3) and sqrt(13) cm, prove tha...

    Text Solution

    |

  8. In a DeltaABC, if c = 2, A=120^(@), a=sqrt(6), then C=

    Text Solution

    |

  9. If A=30^0, a=7,a n db=8 in A B C , then find the number of triangles ...

    Text Solution

    |

  10. If a DeltaABC, b=2, C=60^(@), c=sqrt(6), then a =

    Text Solution

    |

  11. In DeltaABC, let a=5, b=4 and cos (A-B=(31)/(32)), then which of the f...

    Text Solution

    |

  12. In a DeltaABC, If A=30^@,b=2,c=sqrt3+1, then (C-B)/2 is

    Text Solution

    |

  13. In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1, then cos A=

    Text Solution

    |

  14. In a DeltaABC, if A=45^(@), b=sqrt(6), a=2, then B=

    Text Solution

    |

  15. In a triangle, the lengths of the two larger sides are 10 and 9, res...

    Text Solution

    |

  16. The sides of a triangle are 3x + 4y, 4x + 3y and 5x+5y units, where x ...

    Text Solution

    |

  17. In a Delta ABC, a,b,A are given and c(1), c(2) are two values of the ...

    Text Solution

    |

  18. In the ambiguous case, if a, b and A are given and c(1), c(2) are the ...

    Text Solution

    |

  19. In the ambiguous case, if a, b and A are given and c(1), c(2) are the ...

    Text Solution

    |

  20. The smallest angle of the triangle whose sides are 6 + sqrt(12), sqrt(...

    Text Solution

    |