Home
Class 12
MATHS
int(sin x+cos x)/(sin(x -alpha))dx is e...

`int(sin x+cos x)/(sin(x -alpha))dx` is equal to

A

`(cos alpha- sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x-a)|+C`

B

`(cos alpha- sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x-a)|+C`

C

`(cos alpha- sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x+a)|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx \), we will proceed step by step. ### Step 1: Substitution Let us make the substitution: \[ x - \alpha = t \quad \Rightarrow \quad dx = dt \] This changes our integral to: \[ \int \frac{\sin(t + \alpha) + \cos(t + \alpha)}{\sin t} \, dt \] ### Step 2: Expand Sine and Cosine Using the angle addition formulas: \[ \sin(t + \alpha) = \sin t \cos \alpha + \cos t \sin \alpha \] \[ \cos(t + \alpha) = \cos t \cos \alpha - \sin t \sin \alpha \] Substituting these into the integral gives: \[ \int \frac{(\sin t \cos \alpha + \cos t \sin \alpha) + (\cos t \cos \alpha - \sin t \sin \alpha)}{\sin t} \, dt \] ### Step 3: Simplify the Integral Combining the terms in the numerator: \[ \int \frac{\sin t \cos \alpha + \cos t \sin \alpha + \cos t \cos \alpha - \sin t \sin \alpha}{\sin t} \, dt \] This can be separated into two integrals: \[ \int \left( \cos \alpha + \frac{\cos t (\sin \alpha + \cos \alpha)}{\sin t} \right) \, dt \] ### Step 4: Further Simplification This becomes: \[ \int \cos \alpha \, dt + \int \frac{\cos t (\sin \alpha + \cos \alpha)}{\sin t} \, dt \] The first integral is straightforward: \[ \cos \alpha \cdot t \] ### Step 5: Second Integral The second integral can be simplified as: \[ \int \frac{\cos t}{\sin t} (\sin \alpha + \cos \alpha) \, dt = (\sin \alpha + \cos \alpha) \int \cot t \, dt \] The integral of \( \cot t \) is: \[ \ln |\sin t| + C \] ### Step 6: Combine Results Putting everything together, we have: \[ \cos \alpha \cdot t + (\sin \alpha + \cos \alpha) \ln |\sin t| + C \] Substituting back \( t = x - \alpha \): \[ \cos \alpha (x - \alpha) + (\sin \alpha + \cos \alpha) \ln |\sin(x - \alpha)| + C \] ### Final Result Thus, the final result of the integral is: \[ \int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx = \cos \alpha (x - \alpha) + (\sin \alpha + \cos \alpha) \ln |\sin(x - \alpha)| + C \]

To solve the integral \( \int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx \), we will proceed step by step. ### Step 1: Substitution Let us make the substitution: \[ x - \alpha = t \quad \Rightarrow \quad dx = dt \] This changes our integral to: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int(sin x+x cos x)/(x sin x)dx

int e^(x)(sin x-cos x)/(sin^(2)x)dx

int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

int(1)/(sin(x-a)cos(x-b))dx is equal to

int sin x cos(cos x)dx

l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

int(sin2x)/(cos x)*dx

int(cos 2x)/((sin x + cos x)^(2)) dx " is equal to : "

int(dx)/(sin(x-alpha)sin(x-beta)

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int(sin x+cos x)/(sin(x -alpha))dx is equal to

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |