Home
Class 12
MATHS
If int(cos^(4)x)/(sin^(2)x)dx=A cot x +...

If `int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D`, then

A

`A=-2 , B=1//4`

B

`B=-1//4, C=-3`

C

`B=1//4 , C =-3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos^4 x}{\sin^2 x} \, dx\) and express it in the form \(A \cot x + B \sin 2x + \frac{C}{2} x + D\), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{\cos^4 x}{\sin^2 x} \, dx \] We can rewrite \(\cos^4 x\) using the identity \(\cos^2 x = 1 - \sin^2 x\): \[ \cos^4 x = (\cos^2 x)^2 = (1 - \sin^2 x)^2 \] Thus, we have: \[ \int \frac{(1 - \sin^2 x)^2}{\sin^2 x} \, dx \] ### Step 2: Expand the integrand Expanding \((1 - \sin^2 x)^2\): \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x \] So, the integral becomes: \[ \int \left( \frac{1}{\sin^2 x} - 2 + \frac{\sin^4 x}{\sin^2 x} \right) \, dx = \int \left( \csc^2 x - 2 + \sin^2 x \right) \, dx \] ### Step 3: Separate the integral Now we can separate the integral: \[ \int \csc^2 x \, dx - 2 \int dx + \int \sin^2 x \, dx \] ### Step 4: Calculate each integral 1. The integral of \(\csc^2 x\): \[ \int \csc^2 x \, dx = -\cot x \] 2. The integral of \(-2\): \[ -2 \int dx = -2x \] 3. The integral of \(\sin^2 x\): We can use the identity \(\sin^2 x = \frac{1 - \cos 2x}{2}\): \[ \int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2} \int dx - \frac{1}{2} \int \cos 2x \, dx \] \[ = \frac{x}{2} - \frac{1}{4} \sin 2x \] ### Step 5: Combine the results Now we combine the results of the integrals: \[ -\cot x - 2x + \left(\frac{x}{2} - \frac{1}{4} \sin 2x\right) \] Combining terms: \[ -\cot x - 2x + \frac{x}{2} - \frac{1}{4} \sin 2x = -\cot x - \frac{4x}{2} + \frac{x}{2} - \frac{1}{4} \sin 2x \] \[ = -\cot x - \frac{3x}{2} - \frac{1}{4} \sin 2x \] ### Step 6: Final expression Thus, the integral can be expressed as: \[ -\cot x - \frac{1}{4} \sin 2x - \frac{3}{2} x + C \] ### Step 7: Identify coefficients From the expression, we can identify: - \(A = -1\) - \(B = -\frac{1}{4}\) - \(C = -3\) - \(D = C\) (constant of integration) ### Summary of Coefficients - \(A = -1\) - \(B = -\frac{1}{4}\) - \(C = -3\) - \(D\) is a constant.

To solve the integral \(\int \frac{\cos^4 x}{\sin^2 x} \, dx\) and express it in the form \(A \cot x + B \sin 2x + \frac{C}{2} x + D\), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{\cos^4 x}{\sin^2 x} \, dx \] We can rewrite \(\cos^4 x\) using the identity \(\cos^2 x = 1 - \sin^2 x\): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(sin^2x)/(cos^(4)x)dx

int(sin 2x)/(5-cos^(2) x)dx

int (cos^(2)x+sin 2x)/((2 cos x- sin x)^(2))dx

int(dx)/(cos x(sin x+2))

Evaluate: int(cos2x)/(2+sin2x)dx

int(sin2x)/(a^(2)-cos^(2)x)dx

int(sin2x)/((1+cos2x)^(2))dx

int(1+sin2x)/(cos^2x)dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D, then

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |