Home
Class 12
MATHS
If intsin^(5)x cos^(4)x dx =A cos^(9) x...

If `intsin^(5)x cos^(4)x dx =A cos^(9) x +B cos^(7)x+C cos^(5)x+D`,then 9A +7B +5C=

A

1

B

0

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^5 x \cos^4 x \, dx \) and express it in the form \( A \cos^9 x + B \cos^7 x + C \cos^5 x + D \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \sin^5 x \cos^4 x \, dx \] We can express \( \sin^5 x \) as \( \sin^4 x \sin x \) and rewrite \( \sin^4 x \) using the identity \( \sin^2 x = 1 - \cos^2 x \): \[ \sin^4 x = (1 - \cos^2 x)^2 = 1 - 2\cos^2 x + \cos^4 x \] Thus, we have: \[ \sin^5 x = (1 - 2\cos^2 x + \cos^4 x) \sin x \] So, the integral becomes: \[ \int (1 - 2\cos^2 x + \cos^4 x) \sin x \cos^4 x \, dx \] ### Step 2: Substitute \( u = \cos x \) Let \( u = \cos x \), then \( du = -\sin x \, dx \) or \( \sin x \, dx = -du \). The integral now transforms to: \[ -\int (1 - 2u^2 + u^4) u^4 \, du \] This simplifies to: \[ -\int (u^4 - 2u^6 + u^8) \, du \] ### Step 3: Integrate term by term Now we can integrate each term: \[ -\left( \frac{u^5}{5} - \frac{2u^7}{7} + \frac{u^9}{9} \right) + C \] This results in: \[ -\frac{u^5}{5} + \frac{2u^7}{7} - \frac{u^9}{9} + C \] ### Step 4: Substitute back \( u = \cos x \) Substituting back \( u = \cos x \): \[ -\frac{\cos^5 x}{5} + \frac{2\cos^7 x}{7} - \frac{\cos^9 x}{9} + C \] ### Step 5: Rearranging the expression We can rearrange the expression to match the form \( A \cos^9 x + B \cos^7 x + C \cos^5 x + D \): \[ -\frac{1}{9} \cos^9 x + \frac{2}{7} \cos^7 x - \frac{1}{5} \cos^5 x + C \] From this, we identify: - \( A = -\frac{1}{9} \) - \( B = \frac{2}{7} \) - \( C = -\frac{1}{5} \) ### Step 6: Calculate \( 9A + 7B + 5C \) Now we compute: \[ 9A + 7B + 5C = 9\left(-\frac{1}{9}\right) + 7\left(\frac{2}{7}\right) + 5\left(-\frac{1}{5}\right) \] Calculating each term: - \( 9A = -1 \) - \( 7B = 2 \) - \( 5C = -1 \) Adding these together: \[ -1 + 2 - 1 = 0 \] ### Final Answer Thus, the value of \( 9A + 7B + 5C \) is: \[ \boxed{0} \]

To solve the integral \( \int \sin^5 x \cos^4 x \, dx \) and express it in the form \( A \cos^9 x + B \cos^7 x + C \cos^5 x + D \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \sin^5 x \cos^4 x \, dx \] We can express \( \sin^5 x \) as \( \sin^4 x \sin x \) and rewrite \( \sin^4 x \) using the identity \( \sin^2 x = 1 - \cos^2 x \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Find intsin^(3)x cos^(5)x dx .

If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

int(1)/(7+5 cos x)dx=

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C , then the value of k is

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

Evaluate int cos x cos 2x cos 5x dx

Evaluate int cos x cos 2x cos 5x dx

int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C, then f (10) is equal to:

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If intsin^(5)x cos^(4)x dx =A cos^(9) x +B cos^(7)x+C cos^(5)x+D,then...

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |