Home
Class 12
MATHS
If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C...

If `intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k`, then

A

`A=(1)/(7),B=(3)/(5),C=-1`

B

`A=-(1)/(7),B=(3)/(5),C=-1`

C

`A=(-1)/(7),B=(1)/(5),C=-1`

D

`A=(1)/(7),B=(3)/(5),C=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^7 x \, dx \) and express it in the form \( A \sin^7 x + B \sin^5 x + C \sin^3 x + \sin x + k \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \cos^7 x \, dx \] We can express \( \cos^7 x \) as: \[ \int \cos x \cdot \cos^6 x \, dx \] ### Step 2: Use the Pythagorean Identity Using the identity \( \cos^2 x = 1 - \sin^2 x \), we rewrite \( \cos^6 x \): \[ \cos^6 x = (\cos^2 x)^3 = (1 - \sin^2 x)^3 \] Thus, we have: \[ \int \cos x (1 - \sin^2 x)^3 \, dx \] ### Step 3: Substitute \( \sin x = t \) Let \( \sin x = t \). Then, \( \cos x \, dx = dt \). The integral becomes: \[ \int (1 - t^2)^3 \, dt \] ### Step 4: Expand the Expression Now we expand \( (1 - t^2)^3 \): \[ (1 - t^2)^3 = 1 - 3t^2 + 3t^4 - t^6 \] So, the integral now is: \[ \int (1 - 3t^2 + 3t^4 - t^6) \, dt \] ### Step 5: Integrate Each Term Now we integrate term by term: \[ \int 1 \, dt = t \] \[ \int -3t^2 \, dt = -t^3 \] \[ \int 3t^4 \, dt = \frac{3}{5} t^5 \] \[ \int -t^6 \, dt = -\frac{1}{7} t^7 \] Putting it all together, we have: \[ t - t^3 + \frac{3}{5} t^5 - \frac{1}{7} t^7 + C \] ### Step 6: Substitute Back \( t = \sin x \) Now we substitute back \( t = \sin x \): \[ \sin x - \sin^3 x + \frac{3}{5} \sin^5 x - \frac{1}{7} \sin^7 x + C \] ### Step 7: Rearranging the Terms Rearranging the terms gives us: \[ -\frac{1}{7} \sin^7 x + \frac{3}{5} \sin^5 x - \sin^3 x + \sin x + C \] ### Step 8: Identify Coefficients Now we can identify the coefficients: - \( A = -\frac{1}{7} \) - \( B = \frac{3}{5} \) - \( C = -1 \) ### Final Answer Thus, the values of \( A \), \( B \), and \( C \) are: \[ A = -\frac{1}{7}, \quad B = \frac{3}{5}, \quad C = -1 \] ---

To solve the integral \( \int \cos^7 x \, dx \) and express it in the form \( A \sin^7 x + B \sin^5 x + C \sin^3 x + \sin x + k \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \cos^7 x \, dx \] We can express \( \cos^7 x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

intcos^5x dx

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

Evaluate: intcos^7xdx

(7) int e^(x)*sin xdx

If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

If int x^(6) sin ( 5x^(7)) dx = ( k )/( 5) cos ( 5x^(7))+C , then the value of k is

If tan x =(2b)/ (a- c) , y = acos^2 x + 2bsin x cos x + csin^2 x , z=asin^2 x-2b sin x cos x + c cos^2 x , prove that y-z=a-c .

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

sinx+sin3x+sin5x=0

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k, then

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |