Home
Class 12
MATHS
If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x ...

If `int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C` , then

A

7a = 5b

B

5a = 7b

C

7a + 5b = 0

D

5a + 7b = 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin^4 x}{\cos^8 x} \, dx \) and find the constants \( a \) and \( b \) in the expression \( \int \frac{\sin^4 x}{\cos^8 x} \, dx = a \tan^7 x + b \tan^5 x + C \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\sin^4 x}{\cos^8 x} \, dx = \int \frac{\sin^4 x}{\cos^4 x \cos^4 x} \, dx = \int \tan^4 x \sec^4 x \, dx \] ### Step 2: Use Substitution Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \) implies \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). ### Step 3: Substitute in the Integral Now, substituting \( \tan x = t \) into the integral: \[ \int \tan^4 x \sec^4 x \, dx = \int t^4 \sec^4 x \cdot \frac{dt}{1 + t^2} \] Using the identity \( \sec^2 x = 1 + \tan^2 x = 1 + t^2 \), we have \( \sec^4 x = (1 + t^2)^2 \). Thus, \[ \int t^4 (1 + t^2)^2 \cdot \frac{dt}{1 + t^2} = \int t^4 (1 + t^2) \, dt \] ### Step 4: Expand and Integrate Now, we expand: \[ \int t^4 (1 + t^2) \, dt = \int (t^4 + t^6) \, dt \] Integrating term by term: \[ = \frac{t^5}{5} + \frac{t^7}{7} + C \] ### Step 5: Substitute Back Substituting back \( t = \tan x \): \[ = \frac{\tan^5 x}{5} + \frac{\tan^7 x}{7} + C \] ### Step 6: Identify Coefficients From the expression \( \int \frac{\sin^4 x}{\cos^8 x} \, dx = a \tan^7 x + b \tan^5 x + C \), we can identify: - Coefficient of \( \tan^7 x \) is \( a = \frac{1}{7} \) - Coefficient of \( \tan^5 x \) is \( b = \frac{1}{5} \) ### Step 7: Establish Relationships Now we need to find the relationships between \( a \) and \( b \) based on the options provided: 1. \( 7a = 5b \) 2. \( 5a = 7b \) 3. \( 7a + 5b = 0 \) 4. \( 5a + 7b = 0 \) Substituting the values: - For \( 7a = 5b \): \[ 7 \cdot \frac{1}{7} = 5 \cdot \frac{1}{5} \implies 1 = 1 \quad \text{(True)} \] - For \( 5a = 7b \): \[ 5 \cdot \frac{1}{7} = 7 \cdot \frac{1}{5} \implies \frac{5}{7} \neq \frac{7}{5} \quad \text{(False)} \] - For \( 7a + 5b = 0 \): \[ 7 \cdot \frac{1}{7} + 5 \cdot \frac{1}{5} = 1 + 1 \neq 0 \quad \text{(False)} \] - For \( 5a + 7b = 0 \): \[ 5 \cdot \frac{1}{7} + 7 \cdot \frac{1}{5} = \frac{5}{7} + \frac{7}{5} \neq 0 \quad \text{(False)} \] ### Conclusion The correct relationship is \( 7a = 5b \).

To solve the integral \( \int \frac{\sin^4 x}{\cos^8 x} \, dx \) and find the constants \( a \) and \( b \) in the expression \( \int \frac{\sin^4 x}{\cos^8 x} \, dx = a \tan^7 x + b \tan^5 x + C \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\sin^4 x}{\cos^8 x} \, dx = \int \frac{\sin^4 x}{\cos^4 x \cos^4 x} \, dx = \int \tan^4 x \sec^4 x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(sin^2x)/(cos^(4)x)dx

int(sin 2x)/(5-cos^(2) x)dx

Find int(sin^6x)/(cos^8x)dx .

Evaluate int(sin^(6)x)/(cos^(8)x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

int (3-4 sin x)/(cos^(2) x) dx=?

Evaluate: int(sin^4x)/(cos^8x)\ dx

int(sin2x)/(cos x)*dx

Evaluate: int(sin^5x)/(cos^4x)dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |