Home
Class 12
MATHS
If intsqrt((x)/(a^(3)-x^(3)))dx=msin^(-1...

If `intsqrt((x)/(a^(3)-x^(3)))dx=msin^(-1)((x)/(a))^(n)+C`, then

A

m = n

B

m =-n

C

`m=1//n`

D

`m=-1//n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \) and relate it to the expression \( m \sin^{-1}\left(\frac{x}{a}\right)^n + C \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \] This can be rewritten as: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] ### Step 2: Substitution Now, we will use the substitution \( x^{3/2} = t \). Differentiating gives: \[ \frac{3}{2} x^{1/2} \, dx = dt \quad \Rightarrow \quad dx = \frac{2}{3} t^{-1/3} \, dt \] Substituting \( x = t^{2/3} \) into the integral, we have: \[ \int \frac{\sqrt{t^{2/3}}}{\sqrt{a^3 - t^2}} \cdot \frac{2}{3} t^{-1/3} \, dt \] This simplifies to: \[ \int \frac{2}{3} \frac{t^{1/3}}{\sqrt{a^3 - t^2}} \, dt \] ### Step 3: Recognize the Integral Form The integral now resembles the form: \[ \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C \] In our case, we can identify: \[ \int \frac{t^{1/3}}{\sqrt{a^3 - t^2}} \, dt \] This integral can be evaluated using the standard form. ### Step 4: Solve the Integral Using the known integral form, we find: \[ \int \frac{t^{1/3}}{\sqrt{a^3 - t^2}} \, dt = \sin^{-1}\left(\frac{t}{a^{3/2}}\right) + C \] Thus, substituting back \( t = x^{3/2} \): \[ \int \sqrt{\frac{x}{a^3 - x^3}} \, dx = \frac{2}{3} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C \] ### Step 5: Identify m and n From the expression, we can compare it with \( m \sin^{-1}\left(\frac{x}{a}\right)^n + C \): - We have \( m = \frac{2}{3} \) - The argument of the sine inverse function suggests \( n = \frac{3}{2} \) ### Conclusion Thus, we find the relationship: \[ m = \frac{2}{3}, \quad n = \frac{3}{2} \] This gives us the relation: \[ m = \frac{2}{3}, \quad n = \frac{3}{2} \quad \Rightarrow \quad m = \frac{1}{n} \]

To solve the integral \( \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \) and relate it to the expression \( m \sin^{-1}\left(\frac{x}{a}\right)^n + C \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

intsqrt((1+x^2)/(x^2-x^4))dx

intsqrt(x)/sqrt(a^2-x^3)dx

intsqrt((a+x)/(x-a))dx

intsqrt((x^4)/(a^6+x^6))dx

intsqrt(a^(2)-x^(2))dx

Evaluate: intsqrt(x/(a^3-x^3))dx

intsqrt((a+x)/(a-x)) dx

"I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C (where b & d are coprime integer) then b + d equals to.

intsqrt(2x+(1)/(3) dx)

intsqrt((x-3)/(x-4))dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If intsqrt((x)/(a^(3)-x^(3)))dx=msin^(-1)((x)/(a))^(n)+C, then

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |