Home
Class 12
MATHS
If intsqrt((x^(4))/(a^(6)+x^(6)))dx=g (...

If `intsqrt((x^(4))/(a^(6)+x^(6)))dx=g (x)+C`,then g (x)=

A

`(1)/(3)log|x^(3)-sqrt(a^(6)+x^(6))|`

B

`log|x^(3)+sqrt(a^(6)+x^(6))|`

C

`(1)/(3)log|x^(3)+sqrt(a^(6)+x^(6))|`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{x^4}{a^6 + x^6}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \sqrt{\frac{x^4}{a^6 + x^6}} \, dx = \int \frac{x^2}{\sqrt{a^6 + x^6}} \, dx \] ### Step 2: Substitution Next, we will use the substitution \( x^3 = t \). Therefore, differentiating both sides gives us: \[ 3x^2 \, dx = dt \quad \Rightarrow \quad x^2 \, dx = \frac{dt}{3} \] Now, substituting \( x^3 = t \) into the integral: \[ \int \frac{x^2}{\sqrt{a^6 + x^6}} \, dx = \int \frac{\frac{dt}{3}}{\sqrt{a^6 + t^2}} = \frac{1}{3} \int \frac{dt}{\sqrt{a^6 + t^2}} \] ### Step 3: Integral of the Form The integral \( \int \frac{dt}{\sqrt{a^6 + t^2}} \) is of the standard form \( \int \frac{dx}{\sqrt{a^2 + x^2}} = \log |x + \sqrt{a^2 + x^2}| + C \). Here, we can identify \( a^2 = a^6 \) and \( x = t \): \[ \int \frac{dt}{\sqrt{a^6 + t^2}} = \log |t + \sqrt{a^6 + t^2}| + C \] ### Step 4: Substitute Back Now, substituting back \( t = x^3 \): \[ \frac{1}{3} \left( \log |x^3 + \sqrt{a^6 + (x^3)^2}| + C \right) = \frac{1}{3} \log |x^3 + \sqrt{a^6 + x^6}| + C \] ### Final Result Thus, we have: \[ g(x) = \frac{1}{3} \log |x^3 + \sqrt{a^6 + x^6}| \]

To solve the integral \( \int \sqrt{\frac{x^4}{a^6 + x^6}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \sqrt{\frac{x^4}{a^6 + x^6}} \, dx = \int \frac{x^2}{\sqrt{a^6 + x^6}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

intsqrt(x^2+4)dx

intsqrt((a+x)/(a-x)) dx

intsqrt((a+x)/(x-a))dx

intsqrt(x/(1+x))dx

intsqrt((x-3)/(x-4))dx

intsqrt((1+x^2)/(x^2-x^4))dx

intsqrt((x-a)/(b-x))dx

intsqrt((1-x)/(1+x))dx

intsqrt((x+1)/(x-1))dx

intsqrt(x^(2)+4x+1)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If intsqrt((x^(4))/(a^(6)+x^(6)))dx=g (x)+C,then g (x)=

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |