Home
Class 12
MATHS
If int(1)/(sqrt(2ax-x^(2)))dx= fog (x)+...

If `int(1)/(sqrt(2ax-x^(2)))dx= fog (x)+C` , then

A

`f(x)=sin^(-1)x, and g (x) = (x+a)/(a)`

B

`f(x)=sin^(-1) x ,and g (x) = (x-a)/(a)`

C

`f(x)=cos^(-1)x , and g (x) = (x-a)/(a)`

D

`f(x) =tan^(-1)x and g (x)=(x-a)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{2ax - x^2}} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Denominator**: We start with the expression under the square root: \[ \sqrt{2ax - x^2} = \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{-( (x - a)^2 - a^2 )} \] Thus, we can express it as: \[ \sqrt{a^2 - (x - a)^2} \] 2. **Substitute in the Integral**: Now, we substitute this back into the integral: \[ \int \frac{1}{\sqrt{2ax - x^2}} \, dx = \int \frac{1}{\sqrt{a^2 - (x - a)^2}} \, dx \] 3. **Use a Trigonometric Substitution**: We can use the substitution \( x - a = a \sin(\theta) \), which implies \( dx = a \cos(\theta) \, d\theta \). The limits of integration will change accordingly, but since we are looking for an indefinite integral, we focus on the substitution: \[ \sqrt{a^2 - (x - a)^2} = \sqrt{a^2 - a^2 \sin^2(\theta)} = a \cos(\theta) \] 4. **Rewrite the Integral**: The integral now becomes: \[ \int \frac{a \cos(\theta)}{a \cos(\theta)} \, d\theta = \int d\theta \] 5. **Integrate**: The integral of \( d\theta \) is simply: \[ \theta + C \] 6. **Back Substitute**: We need to convert back to \( x \). Since \( \theta = \sin^{-1}\left(\frac{x - a}{a}\right) \), we have: \[ \int \frac{1}{\sqrt{2ax - x^2}} \, dx = \sin^{-1}\left(\frac{x - a}{a}\right) + C \] 7. **Identify \( f(g(x)) \)**: From the expression \( \sin^{-1}\left(\frac{x - a}{a}\right) \), we can identify: - \( f(x) = \sin^{-1}(x) \) - \( g(x) = \frac{x - a}{a} \) ### Final Answer: Thus, we have: \[ \int \frac{1}{\sqrt{2ax - x^2}} \, dx = f(g(x)) + C \] where \( f(x) = \sin^{-1}(x) \) and \( g(x) = \frac{x - a}{a} \).

To solve the integral \( \int \frac{1}{\sqrt{2ax - x^2}} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Denominator**: We start with the expression under the square root: \[ \sqrt{2ax - x^2} = \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{-( (x - a)^2 - a^2 )} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(2+x-3x^2))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(x+1)sqrt((x+2)/(x-2))dx

int (x^(2) +1)/(sqrt(x^(2)+3))dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int(2x+3)/sqrt(1+x+x^2)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If int(1)/(sqrt(2ax-x^(2)))dx= fog (x)+C , then

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |