Home
Class 12
MATHS
int(1)/(7+5 cos x)dx=...

`int(1)/(7+5 cos x)dx=`

A

`(1)/(sqrt(6))tan^(-1)((1)/(sqrt(6))"tan" (x)/(2))+C`.

B

`(1)/(sqrt(3))tan^(-1)((1)/(sqrt(3))"tan" (x)/(2))+C`

C

`(1)/(4)tan^(-1)((x)/(2))+C`

D

`(1)/(7)tan^(-1)("tan" (x)/(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{7 + 5 \cos x} \, dx \), we will use a trigonometric substitution and some algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the cosine term We can express \( \cos x \) in terms of \( \tan \frac{x}{2} \) using the identity: \[ \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Let \( t = \tan \frac{x}{2} \). Then, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] ### Step 2: Substitute in the integral Substituting this into the integral gives: \[ I = \int \frac{1}{7 + 5 \left( \frac{1 - t^2}{1 + t^2} \right)} \, dx \] This simplifies to: \[ I = \int \frac{1 + t^2}{7(1 + t^2) + 5(1 - t^2)} \, dx \] Simplifying the denominator: \[ 7(1 + t^2) + 5(1 - t^2) = 7 + 7t^2 + 5 - 5t^2 = 12 + 2t^2 \] Thus, the integral becomes: \[ I = \int \frac{1 + t^2}{12 + 2t^2} \, dx \] ### Step 3: Factor out constants Factor out the constant from the denominator: \[ I = \int \frac{1 + t^2}{2(6 + t^2)} \, dx = \frac{1}{2} \int \frac{1 + t^2}{6 + t^2} \, dx \] ### Step 4: Change of variable for \( dx \) Now, we need to express \( dx \) in terms of \( dt \): Using the derivative of \( t = \tan \frac{x}{2} \): \[ dx = \frac{2}{1 + t^2} \, dt \] Substituting this into the integral: \[ I = \frac{1}{2} \int \frac{1 + t^2}{6 + t^2} \cdot \frac{2}{1 + t^2} \, dt = \int \frac{1}{6 + t^2} \, dt \] ### Step 5: Solve the integral The integral \( \int \frac{1}{6 + t^2} \, dt \) is a standard form: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] Here, \( a^2 = 6 \) so \( a = \sqrt{6} \): \[ I = \frac{1}{\sqrt{6}} \tan^{-1} \left( \frac{t}{\sqrt{6}} \right) + C \] ### Step 6: Substitute back for \( t \) Recall that \( t = \tan \frac{x}{2} \): \[ I = \frac{1}{\sqrt{6}} \tan^{-1} \left( \frac{\tan \frac{x}{2}}{\sqrt{6}} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{1}{\sqrt{6}} \tan^{-1} \left( \frac{\tan \frac{x}{2}}{\sqrt{6}} \right) + C \] ---

To solve the integral \( I = \int \frac{1}{7 + 5 \cos x} \, dx \), we will use a trigonometric substitution and some algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the cosine term We can express \( \cos x \) in terms of \( \tan \frac{x}{2} \) using the identity: \[ \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Let \( t = \tan \frac{x}{2} \). Then, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/(5+4 cos x)dx

int(1)/(5+2 cos x)dx

Evaluate : int (1)/(5+4 cos x)dx

int(1)/(1-cos 2x) dx

int(1)/( 1+cos 2x ) dx

int (x)/( 1+cos x) dx=?

int_(0)^(pi) (1)/(5+2 cos x)dx

Evaluate : int1/(1+cos x)dx

int sin^(-1)(cos x) dx

int(1)/(cos x . cot x ) dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int(1)/(7+5 cos x)dx=

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |