Home
Class 12
MATHS
int1/(cosx+sqrt(3)sinx) dx equals...

`int1/(cosx+sqrt(3)sinx)` dx equals

A

`logtan((pi)/(2)+(pi)/(12))+C`

B

`logtan((x)/(2)-(pi)/(12))+C`

C

`(1)/(2)log tan ((x)/(2)+(pi)/(12))+C`

D

`(1)/(2)log tan((x)/(2)-(pi)/(12))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\cos x + \sqrt{3} \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator. We can factor out \( \frac{1}{2} \): \[ \int \frac{1}{\cos x + \sqrt{3} \sin x} \, dx = \int \frac{1/2}{\frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x} \, dx \] ### Step 2: Identify Trigonometric Values Recognizing that \( \frac{1}{2} = \cos \frac{\pi}{3} \) and \( \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \), we can rewrite the integral as: \[ \int \frac{1/2}{\cos \frac{\pi}{3} \cos x + \sin \frac{\pi}{3} \sin x} \, dx \] ### Step 3: Use the Cosine Angle Addition Formula Using the cosine angle addition formula, we can express the denominator: \[ \cos \frac{\pi}{3} \cos x + \sin \frac{\pi}{3} \sin x = \cos(x - \frac{\pi}{3}) \] Thus, the integral becomes: \[ \int \frac{1/2}{\cos(x - \frac{\pi}{3})} \, dx = \frac{1}{2} \int \sec(x - \frac{\pi}{3}) \, dx \] ### Step 4: Integrate the Secant Function The integral of \( \sec u \) is \( \ln | \sec u + \tan u | + C \). Therefore, we have: \[ \frac{1}{2} \int \sec(x - \frac{\pi}{3}) \, dx = \frac{1}{2} \left( \ln | \sec(x - \frac{\pi}{3}) + \tan(x - \frac{\pi}{3}) | + C \right) \] ### Step 5: Substitute Back Now we substitute back to get the final result: \[ = \frac{1}{2} \ln | \sec(x - \frac{\pi}{3}) + \tan(x - \frac{\pi}{3}) | + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{1}{\cos x + \sqrt{3} \sin x} \, dx = \frac{1}{2} \ln | \sec(x - \frac{\pi}{3}) + \tan(x - \frac{\pi}{3}) | + C \]

To solve the integral \( \int \frac{1}{\cos x + \sqrt{3} \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator. We can factor out \( \frac{1}{2} \): \[ \int \frac{1}{\cos x + \sqrt{3} \sin x} \, dx = \int \frac{1/2}{\frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int1/(cosx+sqrt(3)sinx)\ dx is equal to (a) logtan(pi/3+x/2)+C (b) logtan(x/2-pi/3)+C (c) 1/2logtan(x/2+pi/3)+C (d) none of these

int(1)/(cosx-sinx)dx is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

Evaluate: int1/(sinx+sqrt(3)cosx)\ dx

Evaluate: int1/(sinx-sqrt(3)cosx)\ dx

Evaluate: int1/(sinx+sqrt(3)cosx)\ dx

Evaluate: int1/(sinx+sqrt(3)cosx)\ dx

Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

int(sqrt(1+cosx))dx equals

int sqrt(1+sinx)dx " is equal to "

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int1/(cosx+sqrt(3)sinx) dx equals

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |