Home
Class 12
MATHS
int(1)/(sin x - cos x +sqrt(2))dx equals...

`int(1)/(sin x - cos x +sqrt(2))dx` equals

A

`-(1)/(sqrt(2))tan ((x)/(2)+(pi)/(8))+C`

B

`(1)/(sqrt(2))tan((x)/(2)+(pi)/(8))`+ C

C

`(1)/(sqrt(2))cot ((x)/(2)+(pi)/(8))`+ C

D

`-(1)/(sqrt(2))cot ((x)/(2)+(pi)/(8))`+ C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sin x - \cos x + \sqrt{2}} \, dx \), we will follow these steps: ### Step 1: Factor out \(\sqrt{2}\) from the denominator We can rewrite the integral as: \[ \int \frac{1}{\sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x + 1 \right)} \, dx \] This allows us to take \(\frac{1}{\sqrt{2}}\) outside the integral: \[ \frac{1}{\sqrt{2}} \int \frac{1}{\frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x + 1} \, dx \] ### Step 2: Recognize the trigonometric identities We know that: \[ \frac{1}{\sqrt{2}} \sin x = \sin\left(x - \frac{\pi}{4}\right) \] and \[ \frac{1}{\sqrt{2}} \cos x = \cos\left(x - \frac{\pi}{4}\right) \] Thus, we can rewrite the integral: \[ \frac{1}{\sqrt{2}} \int \frac{1}{1 - \sin\left(x - \frac{\pi}{4}\right)} \, dx \] ### Step 3: Use the identity \(1 - \sin a = \cos^2\left(\frac{a}{2}\right)\) Using the identity \(1 - \sin a = \cos^2\left(\frac{a}{2}\right)\), we can rewrite the integral: \[ \frac{1}{\sqrt{2}} \int \frac{1}{\cos^2\left(\frac{x - \frac{\pi}{4}}{2}\right)} \, dx \] ### Step 4: Change of variable Let \(u = \frac{x - \frac{\pi}{4}}{2}\), then \(dx = 2 \, du\). The integral becomes: \[ \frac{2}{\sqrt{2}} \int \sec^2(u) \, du \] ### Step 5: Integrate The integral of \(\sec^2(u)\) is \(\tan(u)\): \[ \frac{2}{\sqrt{2}} \tan(u) + C = \frac{2}{\sqrt{2}} \tan\left(\frac{x - \frac{\pi}{4}}{2}\right) + C \] ### Step 6: Simplify the expression Now, simplifying \(\frac{2}{\sqrt{2}}\) gives us \(\sqrt{2}\): \[ \sqrt{2} \tan\left(\frac{x - \frac{\pi}{4}}{2}\right) + C \] ### Step 7: Final expression Substituting back gives us: \[ \sqrt{2} \tan\left(\frac{x}{2} - \frac{\pi}{8}\right) + C \] ### Conclusion Thus, the final answer is: \[ -\frac{1}{\sqrt{2}} \cot\left(\frac{x}{2}\right) + \frac{\pi}{8} + C \]

To solve the integral \( \int \frac{1}{\sin x - \cos x + \sqrt{2}} \, dx \), we will follow these steps: ### Step 1: Factor out \(\sqrt{2}\) from the denominator We can rewrite the integral as: \[ \int \frac{1}{\sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x + 1 \right)} \, dx \] This allows us to take \(\frac{1}{\sqrt{2}}\) outside the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/((2 sin x + cos x)^(2))dx

int (1)/(sqrt(sin^(3) x cos x))dx =?

int(1)/(sin(x-a)cos(x-b))dx is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(1)/(cos x - sin x )dx is equal to

int(sinxcosx)/(sqrt(1-sin^(4)x)dx is equal to

int(sqrt(tan x))/(sin x cos x)dx=

int(cos 2x)/((sin x + cos x)^(2)) dx " is equal to : "

" if " int (sin 2x- cos 2x) dx=(1)/(sqrt(2)) sin (2x-k)+c " then " k=?

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int(1)/(sin x - cos x +sqrt(2))dx equals

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |