Home
Class 12
MATHS
int(sin x +8 cosx)/(4 sin x +6cosx)dx=...

`int(sin x +8 cosx)/(4 sin x +6cosx)dx=`

A

`x+(1)/(2) log | 4 sin x +6 cos x|+C`

B

`2x +log |2 sin x+3 cos x|+C`

C

`x+2 log |2 sin x+3 cos x|+C`

D

`(1)/(2) log |4 sin x+6 cos x | +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x + 8 \cos x}{4 \sin x + 6 \cos x} \, dx\), we will use the method of partial fractions. Here is a step-by-step solution: ### Step 1: Set up the equation We can express the numerator \(\sin x + 8 \cos x\) as a linear combination of the derivative of the denominator \(4 \sin x + 6 \cos x\) and the denominator itself. Thus, we can write: \[ \sin x + 8 \cos x = a(4 \cos x - 6 \sin x) + b(4 \sin x + 6 \cos x) \] where \(a\) and \(b\) are constants to be determined. ### Step 2: Expand the equation Expanding the right-hand side: \[ \sin x + 8 \cos x = (4b + 6a) \cos x + (-6a + 4b) \sin x \] ### Step 3: Equate coefficients Now we equate the coefficients of \(\sin x\) and \(\cos x\) from both sides: 1. For \(\sin x\): \(1 = -6a + 4b\) (Equation 1) 2. For \(\cos x\): \(8 = 4a + 6b\) (Equation 2) ### Step 4: Solve the system of equations Now we solve the system of equations formed by Equation 1 and Equation 2. From Equation 1: \[ 6a - 4b = -1 \quad \text{(1)} \] From Equation 2: \[ 4a + 6b = 8 \quad \text{(2)} \] Multiplying Equation (1) by 3: \[ 18a - 12b = -3 \quad \text{(3)} \] Multiplying Equation (2) by 2: \[ 8a + 12b = 16 \quad \text{(4)} \] Now, add Equations (3) and (4): \[ (18a + 8a) + (-12b + 12b) = -3 + 16 \] \[ 26a = 13 \implies a = \frac{1}{2} \] Substituting \(a = \frac{1}{2}\) into Equation (1): \[ 1 = -6\left(\frac{1}{2}\right) + 4b \] \[ 1 = -3 + 4b \implies 4b = 4 \implies b = 1 \] ### Step 5: Substitute back into the equation Now substituting \(a\) and \(b\) back into our expression: \[ \sin x + 8 \cos x = \frac{1}{2}(4 \cos x - 6 \sin x) + 1(4 \sin x + 6 \cos x) \] This simplifies to: \[ \sin x + 8 \cos x = 2 \cos x - 3 \sin x + 4 \sin x + 6 \cos x = 8 \cos x + \sin x \] This confirms our values for \(a\) and \(b\). ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{\sin x + 8 \cos x}{4 \sin x + 6 \cos x} \, dx = \int \left( \frac{1}{2} \frac{4 \cos x - 6 \sin x}{4 \sin x + 6 \cos x} + \frac{4 \sin x + 6 \cos x}{4 \sin x + 6 \cos x} \right) \, dx \] This simplifies to: \[ \frac{1}{2} \int \frac{4 \cos x - 6 \sin x}{4 \sin x + 6 \cos x} \, dx + \int dx \] ### Step 7: Change of variables Let \(t = 4 \sin x + 6 \cos x\). Then, differentiating: \[ dt = (4 \cos x - 6 \sin x) \, dx \] Thus: \[ \int \frac{4 \cos x - 6 \sin x}{4 \sin x + 6 \cos x} \, dx = \int \frac{1}{t} \, dt = \ln |t| + C \] ### Step 8: Final integration Now substituting back: \[ \frac{1}{2} \ln |4 \sin x + 6 \cos x| + x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin x + 8 \cos x}{4 \sin x + 6 \cos x} \, dx = \frac{1}{2} \ln |4 \sin x + 6 \cos x| + x + C \]

To solve the integral \(\int \frac{\sin x + 8 \cos x}{4 \sin x + 6 \cos x} \, dx\), we will use the method of partial fractions. Here is a step-by-step solution: ### Step 1: Set up the equation We can express the numerator \(\sin x + 8 \cos x\) as a linear combination of the derivative of the denominator \(4 \sin x + 6 \cos x\) and the denominator itself. Thus, we can write: \[ \sin x + 8 \cos x = a(4 \cos x - 6 \sin x) + b(4 \sin x + 6 \cos x) \] where \(a\) and \(b\) are constants to be determined. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

" Prove that " : int(2 sin x +3 cos x)/(3sin x+4 cos x) dx = (18x)/(25) +(1)/(25)log|3s sin x+ 4cosx|c

Evaluate: int_0^(pi//2)(sin x-cosx)/(1+sin x cosx)dx

Evaluate: (i) int(sinx+2cosx)/(2sinx+cosx)\ dx (ii) int(cos4x-cos2x)/(sin4x-sin2x)\ dx

inte^(x)(sinx+cosx)dx=?

int (cosx)/(sin^5x) dx

Evaluate int sin x cosx * cos 2x * cos 4x dx

Evaluate : int(sinx-cosx)/(3+2sin2x)dx .

The value of int(sinx +cosx)/(3+sin2x)dx , is

Evaluate: int(1+2xsinx-cosx)/(x(1-cosx))dx

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int(sin x +8 cosx)/(4 sin x +6cosx)dx=

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |