Home
Class 12
MATHS
int{sin(log(e)x)+cos(log(e)x)}dx is equa...

`int{sin(log_(e)x)+cos(log_(e)x)}dx` is equal to

A

`sin(log_(e)x)+cos(log_(e)x)+C`

B

`xsin (log_(e)x)+C`

C

`xcos(log_(e)x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \sin(\log_e x) + \cos(\log_e x) \right) dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log_e x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \), we can substitute this into our expression for \( dx \): \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral \( I \) in terms of \( t \): \[ I = \int \left( \sin(t) + \cos(t) \right) e^t \, dt \] ### Step 3: Distribute the Integral We can separate the integral: \[ I = \int \sin(t) e^t \, dt + \int \cos(t) e^t \, dt \] ### Step 4: Use Integration by Parts For both integrals, we will use integration by parts. Recall the formula: \[ \int u \, dv = uv - \int v \, du \] #### Integral 1: \( \int \sin(t) e^t \, dt \) Let \( u = \sin(t) \) and \( dv = e^t dt \). Then, \( du = \cos(t) dt \) and \( v = e^t \). Applying integration by parts: \[ \int \sin(t) e^t \, dt = \sin(t) e^t - \int e^t \cos(t) \, dt \] #### Integral 2: \( \int \cos(t) e^t \, dt \) Let \( u = \cos(t) \) and \( dv = e^t dt \). Then, \( du = -\sin(t) dt \) and \( v = e^t \). Applying integration by parts: \[ \int \cos(t) e^t \, dt = \cos(t) e^t + \int e^t \sin(t) \, dt \] ### Step 5: Combine Results Now we have: \[ I = \left( \sin(t) e^t - \int e^t \cos(t) \, dt \right) + \left( \cos(t) e^t + \int e^t \sin(t) \, dt \right) \] This simplifies to: \[ I = \sin(t) e^t + \cos(t) e^t - \int e^t \cos(t) \, dt + \int e^t \sin(t) \, dt \] ### Step 6: Solve for \( I \) Let \( J = \int e^t \cos(t) \, dt \). Then we can express: \[ I = e^t (\sin(t) + \cos(t)) - J + I \] Rearranging gives: \[ 2I = e^t (\sin(t) + \cos(t)) - J \] Now, we can substitute \( J \) back into the equation and solve for \( I \). ### Step 7: Final Result After solving and substituting back \( t = \log_e x \): \[ I = x (\sin(\log_e x) + \cos(\log_e x)) + C \] Thus, the final answer is: \[ I = x \sin(\log_e x) + x \cos(\log_e x) + C \]

To solve the integral \( I = \int \left( \sin(\log_e x) + \cos(\log_e x) \right) dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log_e x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \), we can substitute this into our expression for \( dx \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int cos (log_e x)dx is equal to

intx^(x)(1+log_(e)x) dx is equal to

int ( sin ( log x) + cos ( log x ) dx is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

int(1)/(x cos^(2)(log_(e)x))dx

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

intsin2x*log_(e)cosxdx is equal to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

int((log _(e)x)^(3))/(x)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int{sin(log(e)x)+cos(log(e)x)}dx is equal to

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |