Home
Class 12
MATHS
int(x+1)^(2)e^(x)dx is equal to...

`int(x+1)^(2)e^(x)dx` is equal to

A

`xe^(x)+C`

B

`x^(2)e^(x)+C`

C

`(x+1)e^(x)+C`

D

`(x^(2)+1)e^(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int (x+1)^2 e^x \, dx\), we can follow these steps: ### Step 1: Expand the integrand First, we expand \((x+1)^2\): \[ (x+1)^2 = x^2 + 2x + 1 \] Thus, the integral becomes: \[ \int (x^2 + 2x + 1) e^x \, dx \] ### Step 2: Split the integral We can split the integral into three separate integrals: \[ \int (x^2 + 2x + 1) e^x \, dx = \int x^2 e^x \, dx + 2\int x e^x \, dx + \int e^x \, dx \] ### Step 3: Solve each integral using integration by parts We will use integration by parts for \(\int x^2 e^x \, dx\) and \(\int x e^x \, dx\). #### For \(\int x^2 e^x \, dx\): Let \(u = x^2\) and \(dv = e^x \, dx\). Then, \(du = 2x \, dx\) and \(v = e^x\). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] \[ \int x^2 e^x \, dx = x^2 e^x - \int e^x (2x) \, dx \] This simplifies to: \[ \int x^2 e^x \, dx = x^2 e^x - 2\int x e^x \, dx \] #### For \(\int x e^x \, dx\): Let \(u = x\) and \(dv = e^x \, dx\). Then, \(du = dx\) and \(v = e^x\). Using integration by parts: \[ \int x e^x \, dx = x e^x - \int e^x \, dx \] \[ \int x e^x \, dx = x e^x - e^x \] Thus, we have: \[ \int x e^x \, dx = e^x (x - 1) \] ### Step 4: Substitute back into the integral Now substituting back into our expression for \(\int x^2 e^x \, dx\): \[ \int x^2 e^x \, dx = x^2 e^x - 2(e^x (x - 1)) \] This simplifies to: \[ \int x^2 e^x \, dx = x^2 e^x - 2e^x (x - 1) = x^2 e^x - 2xe^x + 2e^x \] Combining terms, we get: \[ \int x^2 e^x \, dx = e^x (x^2 - 2x + 2) \] ### Step 5: Combine all parts Now we can combine all parts: \[ \int (x^2 + 2x + 1) e^x \, dx = e^x (x^2 - 2x + 2) + 2(e^x (x - 1)) + e^x \] This simplifies to: \[ = e^x (x^2 - 2x + 2 + 2x - 2 + 1) = e^x (x^2 + 1) \] ### Final Answer Thus, the final answer is: \[ \int (x+1)^2 e^x \, dx = e^x (x^2 + 1) + C \]

To solve the integral \(\int (x+1)^2 e^x \, dx\), we can follow these steps: ### Step 1: Expand the integrand First, we expand \((x+1)^2\): \[ (x+1)^2 = x^2 + 2x + 1 \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(2x)dx

The value of int(x-1)e^(-x) dx is equal to

int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

inte^(xloga).e^(x)dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(x e^x)/((1+x)^2)dx is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. int(x+1)^(2)e^(x)dx is equal to

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |