Home
Class 12
MATHS
If u=inte^(ax)sin " bx dx" and v=inte^...

If `u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=`

A

`2e^(ax)`

B

`e^(2ax)`

C

`2e^(2ax)`

D

`bxe^(ax)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (u^2 + v^2)(a^2 + b^2) \) where: - \( u = \int e^{ax} \sin(bx) \, dx \) - \( v = \int e^{ax} \cos(bx) \, dx \) ### Step 1: Finding \( u \) We will use integration by parts to evaluate \( u \). 1. Let \( I = \int e^{ax} \sin(bx) \, dx \). 2. Using integration by parts, we set: - \( f = \sin(bx) \) and \( dg = e^{ax} \, dx \) - Then, \( df = b \cos(bx) \, dx \) and \( g = \frac{e^{ax}}{a} \) Using integration by parts: \[ I = \frac{e^{ax}}{a} \sin(bx) - \int \frac{e^{ax}}{a} b \cos(bx) \, dx \] \[ I = \frac{e^{ax}}{a} \sin(bx) - \frac{b}{a} \int e^{ax} \cos(bx) \, dx \] Let \( J = \int e^{ax} \cos(bx) \, dx \). Thus, \[ I = \frac{e^{ax}}{a} \sin(bx) - \frac{b}{a} J \] ### Step 2: Finding \( J \) Now we will evaluate \( J \) using integration by parts again. 1. Let \( J = \int e^{ax} \cos(bx) \, dx \). 2. Using integration by parts: - \( f = \cos(bx) \) and \( dg = e^{ax} \, dx \) - Then, \( df = -b \sin(bx) \, dx \) and \( g = \frac{e^{ax}}{a} \) Using integration by parts: \[ J = \frac{e^{ax}}{a} \cos(bx) + \frac{b}{a} \int e^{ax} \sin(bx) \, dx \] \[ J = \frac{e^{ax}}{a} \cos(bx) + \frac{b}{a} I \] ### Step 3: Solving the system of equations Now we have two equations: 1. \( I = \frac{e^{ax}}{a} \sin(bx) - \frac{b}{a} J \) 2. \( J = \frac{e^{ax}}{a} \cos(bx) + \frac{b}{a} I \) Substituting \( J \) from the second equation into the first: \[ I = \frac{e^{ax}}{a} \sin(bx) - \frac{b}{a} \left( \frac{e^{ax}}{a} \cos(bx) + \frac{b}{a} I \right) \] \[ I + \frac{b^2}{a^2} I = \frac{e^{ax}}{a} \sin(bx) - \frac{b}{a^2} e^{ax} \cos(bx) \] \[ I \left( 1 + \frac{b^2}{a^2} \right) = \frac{e^{ax}}{a} \sin(bx) - \frac{b}{a^2} e^{ax} \cos(bx) \] \[ I = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) \] Thus, we have: \[ u = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) \] ### Step 4: Finding \( v \) Using similar steps for \( v \): \[ v = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) \] ### Step 5: Finding \( u^2 + v^2 \) Now we need to find \( u^2 + v^2 \): \[ u^2 + v^2 = \left( \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) \right)^2 + \left( \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) \right)^2 \] Factoring out \( \left( \frac{e^{ax}}{a^2 + b^2} \right)^2 \): \[ u^2 + v^2 = \frac{e^{2ax}}{(a^2 + b^2)^2} \left( (a \sin(bx) - b \cos(bx))^2 + (a \cos(bx) + b \sin(bx))^2 \right) \] ### Step 6: Simplifying the expression Expanding the terms inside the parentheses: \[ = \frac{e^{2ax}}{(a^2 + b^2)^2} \left( a^2 \sin^2(bx) - 2ab \sin(bx) \cos(bx) + b^2 \cos^2(bx) + a^2 \cos^2(bx) + 2ab \sin(bx) \cos(bx) + b^2 \sin^2(bx) \right) \] The cross terms cancel out: \[ = \frac{e^{2ax}}{(a^2 + b^2)^2} \left( a^2 (\sin^2(bx) + \cos^2(bx)) + b^2 (\sin^2(bx) + \cos^2(bx)) \right) \] Using \( \sin^2(bx) + \cos^2(bx) = 1 \): \[ = \frac{e^{2ax}}{(a^2 + b^2)^2} (a^2 + b^2) \] ### Step 7: Final Result Now we compute \( (u^2 + v^2)(a^2 + b^2) \): \[ (u^2 + v^2)(a^2 + b^2) = \frac{e^{2ax}}{(a^2 + b^2)^2} (a^2 + b^2) (a^2 + b^2) = e^{2ax} \cdot 1 = 2 e^{2ax} \] Thus, the final answer is: \[ \boxed{2 e^{2ax}} \]

To solve the problem, we need to find the value of \( (u^2 + v^2)(a^2 + b^2) \) where: - \( u = \int e^{ax} \sin(bx) \, dx \) - \( v = \int e^{ax} \cos(bx) \, dx \) ### Step 1: Finding \( u \) We will use integration by parts to evaluate \( u \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If u=inte^(ax)sin " bx dx" and v=int(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals

int(sin2x)/(cos x)*dx

If int_-2^-1 (ax^2-5)dx=0 and 5 + int_1^2 (bx + c) dx = 0 , then

sin^(n)(ax^(2)+bx+c)

{:(ax + by = 1),(bx + ay = ((a + b)^(2))/(a^(2) + b^(2))-1):}

int(dx)/(cos x(sin x+2))

int (ax +b)^(2)dx

Find int(dx)/(ax+b)

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

Evaluate: int(3+sin2x)dx and int (2-3cos2x) dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)...

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |