Home
Class 12
MATHS
If u=inte^(ax)sin " bx dx" and v=int(e...

If `u=inte^(ax)sin " bx dx" and v=int(e^(ax))cos " bx dx"`,then `tan^(-1)((u)/(v))+tan^(-1)((b)/(a))` equals

A

bx

B

2 bx

C

`b^(2)x^(2)`

D

`sqrt(bx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1}\left(\frac{u}{v}\right) + \tan^{-1}\left(\frac{b}{a}\right) \) given: - \( u = \int e^{ax} \sin(bx) \, dx \) - \( v = \int e^{ax} \cos(bx) \, dx \) ### Step 1: Use the Direct Formulas for \( u \) and \( v \) The direct formulas for the integrals are: \[ u = \int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) \] \[ v = \int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) \] ### Step 2: Substitute \( u \) and \( v \) into \( \tan^{-1}\left(\frac{u}{v}\right) \) Now, we substitute \( u \) and \( v \) into the expression \( \tan^{-1}\left(\frac{u}{v}\right) \): \[ \frac{u}{v} = \frac{\frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx))}{\frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx))} \] The \( \frac{e^{ax}}{a^2 + b^2} \) terms cancel out: \[ \frac{u}{v} = \frac{a \sin(bx) - b \cos(bx)}{a \cos(bx) + b \sin(bx)} \] ### Step 3: Use the Tangent Addition Formula Recognizing that the expression can be rewritten using the tangent addition formula, we can express it as: \[ \tan^{-1}\left(\frac{u}{v}\right) = \tan^{-1}\left(\frac{a \sin(bx) - b \cos(bx)}{a \cos(bx) + b \sin(bx)}\right) \] This can be interpreted as \( \tan^{-1}(\tan(\theta)) \) where \( \theta = bx - \phi \) for some angle \( \phi \). ### Step 4: Find \( \tan^{-1}\left(\frac{b}{a}\right) \) Next, we calculate \( \tan^{-1}\left(\frac{b}{a}\right) \). This is simply: \[ \tan^{-1}\left(\frac{b}{a}\right) = \phi \] ### Step 5: Combine the Results Now, we combine the two results: \[ \tan^{-1}\left(\frac{u}{v}\right) + \tan^{-1}\left(\frac{b}{a}\right) = (bx - \phi) + \phi = bx \] ### Final Result Thus, we conclude that: \[ \tan^{-1}\left(\frac{u}{v}\right) + \tan^{-1}\left(\frac{b}{a}\right) = bx \]

To solve the problem, we need to find the value of \( \tan^{-1}\left(\frac{u}{v}\right) + \tan^{-1}\left(\frac{b}{a}\right) \) given: - \( u = \int e^{ax} \sin(bx) \, dx \) - \( v = \int e^{ax} \cos(bx) \, dx \) ### Step 1: Use the Direct Formulas for \( u \) and \( v \) The direct formulas for the integrals are: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(e^(ax).cosbx)dx

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

int (tan^(-1)x)dx

(d)/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

Find int(dx)/(ax+b)

int tan^-1(cotx)dx

int(tan x + cos x)^(2) dx

int " x tan"^(-1) " x dx "

int (ax +b)^(2)dx

int e^(2x) " (tan x+1)"^(2) dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. If u=inte^(ax)sin " bx dx" and v=int(e^(ax))cos " bx dx",then tan^(...

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int(xtan^(-1)x)/sqrt(1+x^(2))dx = sqrt(1+x^(2))f(x) + A " ln "sqrt(...

    Text Solution

    |

  4. "If " int xlog(1+1//x)dx=f(x)log(x+1)+g(x)x^(2)+Ax+C, then

    Text Solution

    |

  5. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  6. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  7. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  11. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  12. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  13. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  14. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  18. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  19. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |