Home
Class 12
MATHS
If f(x)=|x^2-5x+6|,t h e nf^(prime)(x)e ...

If `f(x)=|x^2-5x+6|,t h e nf^(prime)(x)e q u a l s`

A

`2x-5" for "2ltxlt3`

B

`5-2x" for "2ltxlt3`

C

`2x-5" for "2lexle3`

D

`5-2x" for "2lexle3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = |x^2 - 5x + 6| \), we will first analyze the expression inside the absolute value and then differentiate accordingly. ### Step 1: Factor the quadratic expression The expression inside the absolute value is \( x^2 - 5x + 6 \). We can factor this as follows: \[ x^2 - 5x + 6 = (x - 2)(x - 3) \] ### Step 2: Determine the intervals for the absolute value Next, we need to find the points where the expression changes sign. The roots of the equation \( x^2 - 5x + 6 = 0 \) are \( x = 2 \) and \( x = 3 \). We will analyze the sign of \( (x - 2)(x - 3) \) in the intervals defined by these roots: - For \( x < 2 \): Both \( (x - 2) < 0 \) and \( (x - 3) < 0 \) → Product is positive. - For \( 2 < x < 3 \): \( (x - 2) > 0 \) and \( (x - 3) < 0 \) → Product is negative. - For \( x > 3 \): Both \( (x - 2) > 0 \) and \( (x - 3) > 0 \) → Product is positive. Thus, we can express \( f(x) \) as: \[ f(x) = \begin{cases} x^2 - 5x + 6 & \text{if } x < 2 \\ -(x^2 - 5x + 6) & \text{if } 2 \leq x < 3 \\ x^2 - 5x + 6 & \text{if } x \geq 3 \end{cases} \] ### Step 3: Write the piecewise function Now we can write the piecewise definition of \( f(x) \): \[ f(x) = \begin{cases} x^2 - 5x + 6 & \text{if } x < 2 \\ - (x^2 - 5x + 6) & \text{if } 2 \leq x < 3 \\ x^2 - 5x + 6 & \text{if } x \geq 3 \end{cases} \] ### Step 4: Differentiate each piece Now we differentiate each piece of the function: 1. For \( x < 2 \): \[ f'(x) = \frac{d}{dx}(x^2 - 5x + 6) = 2x - 5 \] 2. For \( 2 \leq x < 3 \): \[ f'(x) = \frac{d}{dx}(- (x^2 - 5x + 6)) = - (2x - 5) = 5 - 2x \] 3. For \( x \geq 3 \): \[ f'(x) = \frac{d}{dx}(x^2 - 5x + 6) = 2x - 5 \] ### Step 5: Combine the results Thus, the derivative \( f'(x) \) can be expressed as: \[ f'(x) = \begin{cases} 2x - 5 & \text{if } x < 2 \\ 5 - 2x & \text{if } 2 \leq x < 3 \\ 2x - 5 & \text{if } x \geq 3 \end{cases} \] ### Summary of the solution The final answer for \( f'(x) \) is: \[ f'(x) = \begin{cases} 2x - 5 & \text{if } x < 2 \\ 5 - 2x & \text{if } 2 \leq x < 3 \\ 2x - 5 & \text{if } x \geq 3 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If |x3 6 3 6x6x3|=|2x7x7 2 7 2x|=|4 5x5x4x4 5|=0,t h e n^(prime)x^(prime)i se q u a lto 0 (b) -9 (c) 3 (d) none of these

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

If f: Rvec(-1,1) is defined by f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x) equals sqrt((|x|)/(1-|x|)) (b) -sgn(x)sqrt((|x|)/(1-|x|)) -sqrt(x/(1-x)) (d) none of these

If f: Rvec (-1,1) is defined by f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x) equals sqrt((|x|)/(1-|x|)) (b) -sgn(x)sqrt((|x|)/(1-|x|)) -sqrt(x/(1-x)) (d) none of these

If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= ______ for x>20

If intsqrt(1+sinx)f(x)dx=2/3(1+sinx)^(3/2)+c ,t h e nf(x)e q u a l cosx (b) sinx (c) tanx (d) 1

Ifint_0^(f(x))t^2dt=xcospix ,t h e nf^(prime)(9)i s -1/9 (b) -1/3 (c) 1/3 (d) non-existent

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

    Text Solution

    |

  2. If f(x)=sqrt(1-sin2x), then f'(x) equals

    Text Solution

    |

  3. If f(x)=|x^2-5x+6|,t h e nf^(prime)(x)e q u a l s

    Text Solution

    |

  4. If x^(2)+y^(2)=a^(2)" and "k=1//a then k is equal to

    Text Solution

    |

  5. If f(x)=sinx" and "g(x)=sgn sinx, then g'(1) equals

    Text Solution

    |

  6. If y=sin^(-1)(x/2)+cos^(-1)(x/2) then (dy)/(dx)=

    Text Solution

    |

  7. If y=cos^(-1)((2cosx-3sinx)/(sqrt(13))), then (dy)/(dx), is

    Text Solution

    |

  8. If y=x+e^x , find (d^2x)/(dy^2) .

    Text Solution

    |

  9. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  10. If y^(2)=p(x) is a polynomial of degree 3, then 2(d)/(dx)(y^(3)(d^(2)y...

    Text Solution

    |

  11. if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

    Text Solution

    |

  12. The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)...

    Text Solution

    |

  13. If y=tan^(-1){((log)e(e//x^2))/((log)e(e x^2))}+tan^(-1)((3+2\ (log)e ...

    Text Solution

    |

  14. The expression of (dy)/(dx) of the function y=a^(x^(a^(x...^(oo)))), i...

    Text Solution

    |

  15. If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), then (dy)/(dx) equals

    Text Solution

    |

  16. If y=e^(1+log(e)x), then the value of (dy)/(dx) is equal to

    Text Solution

    |

  17. If x^(y)=e^(x-y), then (dy)/(dx) is equal to

    Text Solution

    |

  18. Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1, then derivative of f(x) with resp...

    Text Solution

    |

  19. If y=e^(sin^(-1)x)" and "u=logx," then"(dy)/(du), is

    Text Solution

    |

  20. The differential coefficient of f(x)=log(logx) with respect to x is

    Text Solution

    |