Home
Class 12
MATHS
If x^(2)+y^(2)=a^(2)" and "k=1//a then k...

If `x^(2)+y^(2)=a^(2)" and "k=1//a` then k is equal to

A

`(y'')/(sqrt(1+y'))`

B

(1)/y(sqrt(1+yy'')

C

`(2y'')/(sqrt(1+y'^(2)))`

D

`(y'')/(2sqrt((1+y'^(2))^(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation and the definition of \( k \). ### Step 1: Start with the given equation We have the equation: \[ x^2 + y^2 = a^2 \] ### Step 2: Differentiate both sides with respect to \( x \) Differentiating both sides with respect to \( x \) gives: \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(a^2) \] Using the chain rule on \( y^2 \), we get: \[ 2x + 2y \frac{dy}{dx} = 0 \] This simplifies to: \[ x + y \frac{dy}{dx} = 0 \] ### Step 3: Solve for \( \frac{dy}{dx} \) From the equation \( x + y \frac{dy}{dx} = 0 \), we can isolate \( \frac{dy}{dx} \): \[ y \frac{dy}{dx} = -x \implies \frac{dy}{dx} = -\frac{x}{y} \] ### Step 4: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} = -\frac{x}{y} \) with respect to \( x \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{x}{y}\right) \] Using the quotient rule, we have: \[ \frac{d^2y}{dx^2} = -\frac{y \cdot 1 - x \cdot \frac{dy}{dx}}{y^2} \] Substituting \( \frac{dy}{dx} = -\frac{x}{y} \) into the equation: \[ \frac{d^2y}{dx^2} = -\frac{y + x\left(-\frac{x}{y}\right)}{y^2} = -\frac{y - \frac{x^2}{y}}{y^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\frac{y^2 - x^2}{y^3} \] ### Step 5: Relate \( k \) to \( a \) Given that \( k = \frac{1}{a} \) and from the original equation \( x^2 + y^2 = a^2 \), we can express \( a \): \[ a = \sqrt{x^2 + y^2} \] Thus, substituting this into the expression for \( k \): \[ k = \frac{1}{\sqrt{x^2 + y^2}} \] ### Final Result Therefore, the value of \( k \) is: \[ k = \frac{1}{\sqrt{x^2 + y^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If e_(1) and e_(2) are the eccentricities of the ellipse (x^(2))/(18)+(y^(2))/(4)=1 and the hyperbola (x^(2))/(9)-(y^(2))/(4)=1 respectively and (e_(1), e_(2)) is a point on the ellipse 15x^(2)+3y^(2)=k , then the value of k is equal to

If (log_2x)/4=(log_2y)/6=(log_2z)/(3k) and x^3 y^2 z=1 , then k is equal to

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

The projection of the line (x-1)/(2)=(y+1)/(2)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) , intersect , then k is equal to

If lim_(x to (pi)/(2))(2^(-cosx)-1)/(x(x-(pi)/(2)))=(2)/(pi)logk , k gt 0 , the k is equal to

If x^(2)+y^(2)=k^(2) , and xy=8-4k , what is (x+y)^(2) in terms of k ?

If the area bounded by the curves x^(2)+y le 2 and y ge x is (k)/(2) sq. units, then 2k is equal to

If the line (x-1)/(5)=(y-3)/(2)=(z-3)/(2) intersects the curve x^(2)-y^(2)=k^(2), z=0 , then the value of 2k can be equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=sqrt(1-sin2x), then f'(x) equals

    Text Solution

    |

  2. If f(x)=|x^2-5x+6|,t h e nf^(prime)(x)e q u a l s

    Text Solution

    |

  3. If x^(2)+y^(2)=a^(2)" and "k=1//a then k is equal to

    Text Solution

    |

  4. If f(x)=sinx" and "g(x)=sgn sinx, then g'(1) equals

    Text Solution

    |

  5. If y=sin^(-1)(x/2)+cos^(-1)(x/2) then (dy)/(dx)=

    Text Solution

    |

  6. If y=cos^(-1)((2cosx-3sinx)/(sqrt(13))), then (dy)/(dx), is

    Text Solution

    |

  7. If y=x+e^x , find (d^2x)/(dy^2) .

    Text Solution

    |

  8. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  9. If y^(2)=p(x) is a polynomial of degree 3, then 2(d)/(dx)(y^(3)(d^(2)y...

    Text Solution

    |

  10. if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

    Text Solution

    |

  11. The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)...

    Text Solution

    |

  12. If y=tan^(-1){((log)e(e//x^2))/((log)e(e x^2))}+tan^(-1)((3+2\ (log)e ...

    Text Solution

    |

  13. The expression of (dy)/(dx) of the function y=a^(x^(a^(x...^(oo)))), i...

    Text Solution

    |

  14. If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), then (dy)/(dx) equals

    Text Solution

    |

  15. If y=e^(1+log(e)x), then the value of (dy)/(dx) is equal to

    Text Solution

    |

  16. If x^(y)=e^(x-y), then (dy)/(dx) is equal to

    Text Solution

    |

  17. Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1, then derivative of f(x) with resp...

    Text Solution

    |

  18. If y=e^(sin^(-1)x)" and "u=logx," then"(dy)/(du), is

    Text Solution

    |

  19. The differential coefficient of f(x)=log(logx) with respect to x is

    Text Solution

    |

  20. If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

    Text Solution

    |