Home
Class 12
MATHS
If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), t...

If `sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)`, then `(dy)/(dx)` equals

A

`sqrt((1-x^(2))(1-y^(2)))`

B

`sqrt((1-y^(2))/(1-x^(2)))`

C

`sqrt((1-x^(2))/(1-y^(2)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \] ### Step 2: Substitute trigonometric identities Let \( x = \sin(\theta) \) and \( y = \sin(\phi) \). Then, we can rewrite the equation as: \[ \sqrt{1 - \sin^2(\theta)} + \sqrt{1 - \sin^2(\phi)} = a(\sin(\theta) - \sin(\phi)) \] Using the identity \( \sqrt{1 - \sin^2(t)} = \cos(t) \), we have: \[ \cos(\theta) + \cos(\phi) = a(\sin(\theta) - \sin(\phi)) \] ### Step 3: Simplify the equation Now, we can express \( a \): \[ a = \frac{\cos(\theta) + \cos(\phi)}{\sin(\theta) - \sin(\phi)} \] ### Step 4: Use trigonometric identities Using the sum-to-product identities: \[ \cos(\theta) + \cos(\phi) = 2 \cos\left(\frac{\theta + \phi}{2}\right) \cos\left(\frac{\theta - \phi}{2}\right) \] \[ \sin(\theta) - \sin(\phi) = 2 \sin\left(\frac{\theta + \phi}{2}\right) \cos\left(\frac{\theta - \phi}{2}\right) \] Substituting these into the expression for \( a \): \[ a = \frac{2 \cos\left(\frac{\theta + \phi}{2}\right) \cos\left(\frac{\theta - \phi}{2}\right)}{2 \sin\left(\frac{\theta + \phi}{2}\right) \cos\left(\frac{\theta - \phi}{2}\right)} \] The \( 2 \cos\left(\frac{\theta - \phi}{2}\right) \) cancels out: \[ a = \frac{\cos\left(\frac{\theta + \phi}{2}\right)}{\sin\left(\frac{\theta + \phi}{2}\right)} = \cot\left(\frac{\theta + \phi}{2}\right) \] ### Step 5: Differentiate both sides Now differentiate both sides of the original equation with respect to \( x \): \[ \frac{d}{dx}(\sqrt{1 - x^2}) + \frac{d}{dx}(\sqrt{1 - y^2}) = \frac{d}{dx}(a(x - y)) \] Using the chain rule: \[ \frac{-x}{\sqrt{1 - x^2}} + \frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = a(1 - \frac{dy}{dx}) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ \frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} + a \frac{dy}{dx} = a - \frac{x}{\sqrt{1 - x^2}} \] Factoring out \( \frac{dy}{dx} \): \[ \left(a - \frac{y}{\sqrt{1 - y^2}}\right) \frac{dy}{dx} = a - \frac{x}{\sqrt{1 - x^2}} \] Thus, \[ \frac{dy}{dx} = \frac{a - \frac{x}{\sqrt{1 - x^2}}}{a - \frac{y}{\sqrt{1 - y^2}}} \] ### Final Result This gives us the final expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If y=tan^(-1){((log)e(e//x^2))/((log)e(e x^2))}+tan^(-1)((3+2\ (log)e ...

    Text Solution

    |

  2. The expression of (dy)/(dx) of the function y=a^(x^(a^(x...^(oo)))), i...

    Text Solution

    |

  3. If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), then (dy)/(dx) equals

    Text Solution

    |

  4. If y=e^(1+log(e)x), then the value of (dy)/(dx) is equal to

    Text Solution

    |

  5. If x^(y)=e^(x-y), then (dy)/(dx) is equal to

    Text Solution

    |

  6. Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1, then derivative of f(x) with resp...

    Text Solution

    |

  7. If y=e^(sin^(-1)x)" and "u=logx," then"(dy)/(du), is

    Text Solution

    |

  8. The differential coefficient of f(x)=log(logx) with respect to x is

    Text Solution

    |

  9. If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

    Text Solution

    |

  10. The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to ...

    Text Solution

    |

  11. If f(x)=log(a)(log(a)x), then f'(x), is

    Text Solution

    |

  12. The differential coefficient of f((log)e x) with respect to x , where ...

    Text Solution

    |

  13. If x^(m).y^(n)=(x+y)^(m+n), prove that (i) (dy)/(dx) =(y)/(x) and (i...

    Text Solution

    |

  14. The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

    Text Solution

    |

  15. y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)), x > 0. Find dy/dx

    Text Solution

    |

  16. If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

    Text Solution

    |

  17. If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^...

    Text Solution

    |

  18. If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

    Text Solution

    |

  19. If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to (a...

    Text Solution

    |

  20. If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)...

    Text Solution

    |