Home
Class 12
MATHS
If y=e^(1+log(e)x), then the value of (d...

If `y=e^(1+log_(e)x)`, then the value of `(dy)/(dx)` is equal to

A

e

B

1

C

0

D

`log_(e)xelog_(e^(e^(x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = e^{1 + \log_e x} \), we can follow these steps: ### Step 1: Simplify the expression for \( y \) We start with the given function: \[ y = e^{1 + \log_e x} \] Using the property of exponents, we can rewrite this as: \[ y = e^1 \cdot e^{\log_e x} = e \cdot x \] ### Step 2: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(e \cdot x) \] Since \( e \) is a constant, the derivative is: \[ \frac{dy}{dx} = e \cdot \frac{d}{dx}(x) = e \cdot 1 = e \] ### Final Result Thus, the value of \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y = log_(10) x , then the value of (dy)/(dx) is

If y=e find the value of (dy)/(dx) is

If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If Y=x^(2)+sin^(-1)x+log_(e)x, then find (dy)/(dx)

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to