Home
Class 12
MATHS
If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'...

If `y=(tan^- 1)(sqrt(1+x^2)-1)/x,` then `y'(1)` is equal to

A

`(1)/(4)

B

0

C

1

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( y'(1) \) for the function \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \), we will follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \] ### Step 2: Substitute \( x = \tan \theta \) To simplify the expression, we can use the substitution \( x = \tan \theta \). Then we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2 \theta} = \sec \theta \] Thus, the expression becomes: \[ y = \tan^{-1} \left( \frac{\sec \theta - 1}{\tan \theta} \right) \] ### Step 3: Simplify the expression Using the identity \( \sec \theta = \frac{1}{\cos \theta} \) and \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can rewrite \( y \): \[ y = \tan^{-1} \left( \frac{\frac{1}{\cos \theta} - 1}{\frac{\sin \theta}{\cos \theta}} \right) = \tan^{-1} \left( \frac{1 - \cos \theta}{\sin \theta} \right) \] ### Step 4: Use the identity for \( 1 - \cos \theta \) We know that: \[ 1 - \cos \theta = 2 \sin^2 \left( \frac{\theta}{2} \right) \] Thus, we can write: \[ y = \tan^{-1} \left( \frac{2 \sin^2 \left( \frac{\theta}{2} \right)}{\sin \theta} \right) \] ### Step 5: Rewrite \( \sin \theta \) Using the double angle identity for sine: \[ \sin \theta = 2 \sin \left( \frac{\theta}{2} \right) \cos \left( \frac{\theta}{2} \right) \] We substitute this back into our expression for \( y \): \[ y = \tan^{-1} \left( \frac{2 \sin^2 \left( \frac{\theta}{2} \right)}{2 \sin \left( \frac{\theta}{2} \right) \cos \left( \frac{\theta}{2} \right)} \right) = \tan^{-1} \left( \frac{\sin \left( \frac{\theta}{2} \right)}{\cos \left( \frac{\theta}{2} \right)} \right) = \frac{\theta}{2} \] ### Step 6: Substitute back for \( \theta \) Since \( \theta = \tan^{-1} x \), we have: \[ y = \frac{1}{2} \tan^{-1} x \] ### Step 7: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Step 8: Evaluate at \( x = 1 \) Now we substitute \( x = 1 \): \[ y'(1) = \frac{1}{2} \cdot \frac{1}{1+1^2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] Thus, the final answer is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If y=cos^(-1)((sqrt(x)-1)/(sqrt(x)+1))+cosec^(-1)((sqrt(x)+1)/(sqrt(x)-1)) , then (dy)/(dx) is equal to

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If y=e^(sin^(-1)x)" and "u=logx," then"(dy)/(du), is

    Text Solution

    |

  2. The differential coefficient of f(x)=log(logx) with respect to x is

    Text Solution

    |

  3. If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

    Text Solution

    |

  4. The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to ...

    Text Solution

    |

  5. If f(x)=log(a)(log(a)x), then f'(x), is

    Text Solution

    |

  6. The differential coefficient of f((log)e x) with respect to x , where ...

    Text Solution

    |

  7. If x^(m).y^(n)=(x+y)^(m+n), prove that (i) (dy)/(dx) =(y)/(x) and (i...

    Text Solution

    |

  8. The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

    Text Solution

    |

  9. y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)), x > 0. Find dy/dx

    Text Solution

    |

  10. If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

    Text Solution

    |

  11. If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^...

    Text Solution

    |

  12. If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

    Text Solution

    |

  13. If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to (a...

    Text Solution

    |

  14. If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)...

    Text Solution

    |

  15. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  16. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  17. If y=int0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf...

    Text Solution

    |

  18. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  19. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  20. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |