Home
Class 12
MATHS
The derivative of sin^(-1)((sqrt(1+x)+sq...

The derivative of `sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))` with respect to x is

A

`-(1)/(2sqrt(1-x^(2)))`

B

`(1)/(2sqrt(1-x^(2)))`

C

`(2)/(sqrt(1-x^(2)))`

D

`(-2)/(sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Simplify the Expression Let: \[ y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \] We can rewrite the expression inside the sine inverse function. ### Step 2: Use Trigonometric Identities Let \( x = \cos(2\theta) \). Then: \[ \sqrt{1+x} = \sqrt{1+\cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2}\cos(\theta) \] \[ \sqrt{1-x} = \sqrt{1-\cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2}\sin(\theta) \] ### Step 3: Substitute Back Substituting these back into our expression gives: \[ y = \sin^{-1}\left(\frac{\sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta)}{2}\right) = \sin^{-1}\left(\frac{\sqrt{2}}{2}(\cos(\theta) + \sin(\theta))\right) \] Since \( \frac{\sqrt{2}}{2} = \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) \), we can write: \[ y = \sin^{-1}\left(\sin\left(\frac{\pi}{4} + \theta\right)\right) \] Thus: \[ y = \frac{\pi}{4} + \theta \] ### Step 4: Find \( \theta \) From \( x = \cos(2\theta) \), we have: \[ 2\theta = \cos^{-1}(x) \quad \Rightarrow \quad \theta = \frac{1}{2}\cos^{-1}(x) \] Substituting this back gives: \[ y = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}(x) \] ### Step 5: Differentiate with Respect to \( x \) Now, we differentiate \( y \): \[ \frac{dy}{dx} = 0 + \frac{1}{2} \cdot \frac{d}{dx}(\cos^{-1}(x)) \] The derivative of \( \cos^{-1}(x) \) is: \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1-x^2}} \] Thus: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \left(-\frac{1}{\sqrt{1-x^2}}\right) = -\frac{1}{2\sqrt{1-x^2}} \] ### Final Answer The derivative of \( \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)[(sqrt(1+x)+sqrt(1-x))/2] with respect to 'x'.

The derivative of sin^(-1)((x)/(sqrt(1+x^(2)))) w.r.t .x is

Differentiate sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0

Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with respect to tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) at x = 0

The derivative of f(x) = (sqrt(x) + (1)/(sqrt(x)))^(2) is

find derivative of ((1+x).3sqrt(x))/(sqrt(x))

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. The differential coefficient of f(x)=log(logx) with respect to x is

    Text Solution

    |

  2. If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

    Text Solution

    |

  3. The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to ...

    Text Solution

    |

  4. If f(x)=log(a)(log(a)x), then f'(x), is

    Text Solution

    |

  5. The differential coefficient of f((log)e x) with respect to x , where ...

    Text Solution

    |

  6. If x^(m).y^(n)=(x+y)^(m+n), prove that (i) (dy)/(dx) =(y)/(x) and (i...

    Text Solution

    |

  7. The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

    Text Solution

    |

  8. y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)), x > 0. Find dy/dx

    Text Solution

    |

  9. If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

    Text Solution

    |

  10. If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^...

    Text Solution

    |

  11. If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

    Text Solution

    |

  12. If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to (a...

    Text Solution

    |

  13. If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)...

    Text Solution

    |

  14. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  15. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  16. If y=int0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf...

    Text Solution

    |

  17. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  18. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  19. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  20. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |