Home
Class 12
MATHS
If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(...

If `f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1)`
`+tan^(-1)((x)/(sqrt(4-x^(2))))`, then f'(0) is equal to

A

2

B

0

C

`1//2`

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \[ f(x) = \left( \log_{\cot x} \tan x \right) \left( \log_{\tan x} \cot x \right)^{-1} + \tan^{-1} \left( \frac{x}{\sqrt{4 - x^2}} \right), \] we will break it down step by step. ### Step 1: Simplifying the logarithmic part We start with the logarithmic expressions: \[ \log_{\cot x} \tan x = \frac{\log \tan x}{\log \cot x} = \frac{\log \tan x}{\log \left( \frac{1}{\tan x} \right)} = \frac{\log \tan x}{-\log \tan x} = -1. \] Similarly, \[ \log_{\tan x} \cot x = \frac{\log \cot x}{\log \tan x} = \frac{-\log \tan x}{\log \tan x} = -1. \] Thus, \[ \left( \log_{\tan x} \cot x \right)^{-1} = -1. \] So, we have: \[ \left( \log_{\cot x} \tan x \right) \left( \log_{\tan x} \cot x \right)^{-1} = -1 \cdot -1 = 1. \] ### Step 2: Simplifying the second term Now we simplify the second term: \[ \tan^{-1} \left( \frac{x}{\sqrt{4 - x^2}} \right). \] ### Step 3: Combining the results Thus, we can rewrite \( f(x) \): \[ f(x) = 1 + \tan^{-1} \left( \frac{x}{\sqrt{4 - x^2}} \right). \] ### Step 4: Finding the derivative \( f'(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = 0 + \frac{d}{dx} \left( \tan^{-1} \left( \frac{x}{\sqrt{4 - x^2}} \right) \right). \] Using the chain rule for differentiation: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}, \] where \( u = \frac{x}{\sqrt{4 - x^2}} \). ### Step 5: Finding \( \frac{du}{dx} \) We need to differentiate \( u \): \[ u = \frac{x}{\sqrt{4 - x^2}}. \] Using the quotient rule: \[ \frac{du}{dx} = \frac{\sqrt{4 - x^2} \cdot 1 - x \cdot \frac{-x}{\sqrt{4 - x^2}}}{(4 - x^2)} = \frac{\sqrt{4 - x^2} + \frac{x^2}{\sqrt{4 - x^2}}}{4 - x^2}. \] This simplifies to: \[ \frac{du}{dx} = \frac{(4 - x^2) + x^2}{\sqrt{4 - x^2}(4 - x^2)} = \frac{4}{\sqrt{4 - x^2}(4 - x^2)}. \] ### Step 6: Evaluating \( f'(0) \) Now we substitute \( x = 0 \): \[ u(0) = \frac{0}{\sqrt{4}} = 0, \] and \[ \frac{du}{dx} \bigg|_{x=0} = \frac{4}{\sqrt{4}(4)} = \frac{4}{2 \cdot 4} = \frac{1}{2}. \] Thus, \[ f'(0) = \frac{1}{1 + 0^2} \cdot \frac{1}{2} = \frac{1}{2}. \] ### Final Answer Therefore, \[ f'(0) = \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

intdx/(4tanx+4cotx)

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

If tan(cotx)=cot(tanx), then sin2x is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

Find f'(x) if f(x) = (tanx)^(tanx)

If tan(cotx)=cot(tanx) , then sin2x is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)), x > 0. Find dy/dx

    Text Solution

    |

  2. If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

    Text Solution

    |

  3. If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^...

    Text Solution

    |

  4. If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

    Text Solution

    |

  5. If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to (a...

    Text Solution

    |

  6. If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)...

    Text Solution

    |

  7. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  8. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  9. If y=int0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf...

    Text Solution

    |

  10. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  11. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  12. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  13. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  14. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  15. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  16. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  19. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  20. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |