Home
Class 12
MATHS
If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2...

If `x^2+y^2=(t+1/t)` and `x^4+y^4=t^2+1/t^2`, then `x^3y(dy)/(dx)=`

A

0

B

1

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 y \frac{dy}{dx} \) given the equations: 1. \( x^2 + y^2 = t + \frac{1}{t} \) 2. \( x^4 + y^4 = t^2 + \frac{1}{t^2} \) ### Step 1: Differentiate the first equation We start by differentiating the first equation with respect to \( x \): \[ \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}\left(t + \frac{1}{t}\right) \] Using the chain rule, we get: \[ 2x + 2y \frac{dy}{dx} = \frac{dt}{dx} - \frac{1}{t^2} \frac{dt}{dx} \] Factoring out \( \frac{dt}{dx} \): \[ 2x + 2y \frac{dy}{dx} = \left(1 - \frac{1}{t^2}\right) \frac{dt}{dx} \] ### Step 2: Differentiate the second equation Next, we differentiate the second equation: \[ \frac{d}{dx}(x^4 + y^4) = \frac{d}{dx}\left(t^2 + \frac{1}{t^2}\right) \] Using the chain rule again, we have: \[ 4x^3 + 4y^3 \frac{dy}{dx} = 2t \frac{dt}{dx} - \frac{2}{t^3} \frac{dt}{dx} \] Factoring out \( \frac{dt}{dx} \): \[ 4x^3 + 4y^3 \frac{dy}{dx} = \left(2t - \frac{2}{t^3}\right) \frac{dt}{dx} \] ### Step 3: Solve for \( \frac{dy}{dx} \) Now we have two equations involving \( \frac{dy}{dx} \) and \( \frac{dt}{dx} \). We can express \( \frac{dt}{dx} \) from the first equation: \[ \frac{dt}{dx} = \frac{2x + 2y \frac{dy}{dx}}{1 - \frac{1}{t^2}} \] Substituting this into the second equation gives us a relationship between \( x, y, \frac{dy}{dx} \), and \( t \). ### Step 4: Express \( x^3 y \frac{dy}{dx} \) We need to find \( x^3 y \frac{dy}{dx} \). From the first differentiated equation, we can isolate \( \frac{dy}{dx} \): \[ 2y \frac{dy}{dx} = -2x + \left(1 - \frac{1}{t^2}\right) \frac{dt}{dx} \] Now, we can multiply both sides by \( \frac{x^3 y}{2y} \): \[ x^3 y \frac{dy}{dx} = -x^4 + \frac{x^3 y}{2y} \left(1 - \frac{1}{t^2}\right) \frac{dt}{dx} \] ### Step 5: Substitute known values From the original equations, we know that \( x^2 + y^2 = t + \frac{1}{t} \) and \( x^4 + y^4 = t^2 + \frac{1}{t^2} \). We can use these to simplify our expressions. After simplification, we find that: \[ x^3 y \frac{dy}{dx} = -1 \] Thus, the final answer is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2 + 1/t^2 then prove that dy/dx = x^3y

If x=t^2,\ \ y=t^3 , then (dy)/(dx)

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to (a...

    Text Solution

    |

  2. If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)...

    Text Solution

    |

  3. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  4. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  5. If y=int0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf...

    Text Solution

    |

  6. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  7. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  8. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  9. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  10. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  11. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  12. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  15. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  16. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  17. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  18. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  19. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  20. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |