Home
Class 12
MATHS
y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sq...

`y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))` then `dy/dx`

A

`(1)/(sqrt(1-x^(4)))`

B

`-(1)/(sqrt(1-x^(4)))`

C

`(x)/(sqrt(1-x^(4)))`

D

`-(x)/(sqrt(1-x^(4)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \tan^{-1} \left( \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right), \] we will follow these steps: ### Step 1: Simplify the expression inside the arctangent Let \( u = \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \). ### Step 2: Use trigonometric identities We can rewrite \( \sqrt{1+x^2} \) and \( \sqrt{1-x^2} \) in terms of trigonometric functions. Let \( x^2 = \cos(2\theta) \). Then: - \( 1 + x^2 = 1 + \cos(2\theta) = 2\cos^2(\theta) \) - \( 1 - x^2 = 1 - \cos(2\theta) = 2\sin^2(\theta) \) Substituting these into \( u \): \[ u = \frac{\sqrt{2\cos^2(\theta)} + \sqrt{2\sin^2(\theta)}}{\sqrt{2\cos^2(\theta)} - \sqrt{2\sin^2(\theta)}} \] ### Step 3: Factor out the square root of 2 This simplifies to: \[ u = \frac{\sqrt{2}(\cos(\theta) + \sin(\theta))}{\sqrt{2}(\cos(\theta) - \sin(\theta))} = \frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)} \] ### Step 4: Use the tangent addition formula Using the tangent addition formula: \[ \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} \] We can express \( u \) as: \[ u = \tan\left(\frac{\pi}{4} + \theta\right) \] ### Step 5: Substitute back into \( y \) Thus, we have: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \theta\right)\right) \] ### Step 6: Simplify \( y \) Since \( \frac{\pi}{4} + \theta \) is in the range of the arctangent function, we can write: \[ y = \frac{\pi}{4} + \theta \] ### Step 7: Relate \( \theta \) back to \( x \) Recall that \( \theta = \frac{1}{2} \cos^{-1}(x^2) \). Therefore: \[ y = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2) \] ### Step 8: Differentiate \( y \) Now, differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 + \frac{1}{2} \cdot \frac{d}{dx} \left( \cos^{-1}(x^2) \right) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx} \left( \cos^{-1}(x^2) \right) = -\frac{1}{\sqrt{1 - (x^2)^2}} \cdot 2x = -\frac{2x}{\sqrt{1 - x^4}} \] Thus: \[ \frac{dy}{dx} = \frac{1}{2} \left( -\frac{2x}{\sqrt{1 - x^4}} \right) = -\frac{x}{\sqrt{1 - x^4}} \] ### Final Result So, the derivative is: \[ \frac{dy}{dx} = -\frac{x}{\sqrt{1 - x^4}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

The value of tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=theta, |x|<1/2,x!=0 , is equal to:

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .

Differentiate tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))} with respect to cos^(-1)x^2

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))},"f i n d"(dy)/(dx)

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)...

    Text Solution

    |

  2. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  3. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  4. If y=int0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf...

    Text Solution

    |

  5. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  6. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  7. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  8. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  9. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  10. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  11. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  14. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  15. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  16. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  17. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  18. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  19. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |