Home
Class 12
MATHS
If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4)...

If `f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|`, where p is a constant, then `(d^(3))/(dx^(3))(f(x))`, is

A

proportional to `x^(2)`

B

proportional to x

C

proportional to `x^(3)`

D

a constant

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the third derivative of the function \( f(x) \) defined as the determinant of the following matrix: \[ f(x) = \begin{vmatrix} x^3 & 1 & p \\ x^4 & -6 & p^2 \\ 3x^2 & 4 & p^3 \end{vmatrix} \] ### Step 1: Calculate the Determinant To compute the determinant, we can use the method of cofactor expansion. We can expand along the first row: \[ f(x) = x^3 \begin{vmatrix} -6 & p^2 \\ 4 & p^3 \end{vmatrix} - 1 \begin{vmatrix} x^4 & p^2 \\ 3x^2 & p^3 \end{vmatrix} + p \begin{vmatrix} x^4 & -6 \\ 3x^2 & 4 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} -6 & p^2 \\ 4 & p^3 \end{vmatrix} = (-6)(p^3) - (p^2)(4) = -6p^3 - 4p^2 \] 2. For the second determinant: \[ \begin{vmatrix} x^4 & p^2 \\ 3x^2 & p^3 \end{vmatrix} = (x^4)(p^3) - (p^2)(3x^2) = x^4p^3 - 3p^2x^2 \] 3. For the third determinant: \[ \begin{vmatrix} x^4 & -6 \\ 3x^2 & 4 \end{vmatrix} = (x^4)(4) - (-6)(3x^2) = 4x^4 + 18x^2 \] Now substituting back into the determinant: \[ f(x) = x^3(-6p^3 - 4p^2) - (x^4p^3 - 3p^2x^2) + p(4x^4 + 18x^2) \] ### Step 2: Simplify \( f(x) \) Combining the terms: \[ f(x) = -6p^3x^3 - 4p^2x^3 - x^4p^3 + 3p^2x^2 + 4px^4 + 18px^2 \] Rearranging gives: \[ f(x) = (-x^4p^3 + 4px^4) + (-6p^3x^3 - 4p^2x^3) + (3p^2x^2 + 18px^2) \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \) three times. 1. **First Derivative \( f'(x) \)**: Using the power rule: \[ f'(x) = \frac{d}{dx}(-p^3x^4 + 4px^4) + \frac{d}{dx}(-6p^3x^3 - 4p^2x^3) + \frac{d}{dx}(3p^2x^2 + 18px^2) \] Calculating gives: \[ f'(x) = (-4p^3 + 4p)x^3 + (-18p^3 - 12p^2)x^2 + (6p^2 + 36p)x \] 2. **Second Derivative \( f''(x) \)**: Differentiating \( f'(x) \): \[ f''(x) = (-12p^3 + 12p)x^2 + (-36p^3 - 24p^2)x + (6p^2 + 36p) \] 3. **Third Derivative \( f'''(x) \)**: Differentiating \( f''(x) \): \[ f'''(x) = (-24p^3 + 24p)x + (-36p^3 - 24p^2) \] ### Final Result Thus, the third derivative \( f'''(x) \) is: \[ f'''(x) = (-24p^3 + 24p)x - (36p^3 + 24p^2) \] ### Conclusion The final expression shows that \( f'''(x) \) is a linear function in \( x \), indicating that it is proportional to \( x \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]| , where p is a constant. Then (d^3)/(dx^3)(f(x)) at x=0 is (a) p (b) p-p^3 (c) p+p^3 (d) independent of p

Let f(x)=|x^3sinxcosx6-1 0p p^2p^3|,w h e r ep is a constant. Then (d^3)/(dx^3)(f(x)) at x=0 is p (b) p-p^3 p+p^3 (d) independent of p

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

The probability distribution of a random variable x is given as under P(X=x)={{:(kx^(2),x="1,2,3"),(2kx,x="4,5,6"),("0,","otherwise"):} where, k is a constant. Calculate (i) E(X) (ii) E(3X^(2)) (iii) P(Xge4)

If p is a constant and f(x) =|(x^2,x^3,x^4),(2,3,6),(p,p^2,p^3)| if f'(x)=0 have roots alpha,beta , then (1) alpha and beta have opposite sign and equal magnitude at p= root (3) (2) At p=1 , f''(x)=0 represent an identity (3) at p=2 ,product of roots are unity (4) at p=- (root 3) product of roots are positive

(4) If p(x)=x^(3)-2x^(2)-x+2=(x+1)(x-2)(x-d) then what is the value of d?

Let f(x) be a real valued periodic function with domain R such that f(x+p)=1+[2-3f(x)+3(f(x))^(2)-(f(x))^(3)]^(1//3) hold good for all x in R and some positive constant p, then the periodic of f(x) is

if p=x+1 and (4p-3)/(2)-(3x+2)/(5)=(3)/(2) find x

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  2. If y=int0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf...

    Text Solution

    |

  3. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  4. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  5. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  7. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  8. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  9. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  12. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  13. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  14. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  15. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  16. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  17. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  18. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |