Home
Class 12
MATHS
If x=acostheta,y=bsintheta," then"(d^(3)...

If `x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3))` is equal to

A

`-(3b)/(a^(3))"cosec"^(4)thetacot^(4)theta`

B

`(3b)/(a^(3))"cosec"^(4)thetacottheta`

C

`-(3b)/(a^(3))"cosec"^(4)thetacottheta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the third derivative of \( y \) with respect to \( x \), given the parametric equations \( x = a \cos \theta \) and \( y = b \sin \theta \). ### Step 1: Differentiate \( x \) and \( y \) with respect to \( \theta \) We start by differentiating both equations with respect to \( \theta \): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(a \cos \theta) = -a \sin \theta \] \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(b \sin \theta) = b \cos \theta \] ### Step 2: Find \( \frac{dy}{dx} \) Using the chain rule, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{b \cos \theta}{-a \sin \theta} = -\frac{b}{a} \cot \theta \] ### Step 3: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now, we differentiate \( \frac{dy}{dx} \) with respect to \( x \): Using the chain rule again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{b}{a} \cot \theta\right) = -\frac{b}{a} \frac{d}{d\theta}(\cot \theta) \cdot \frac{d\theta}{dx} \] We know that: \[ \frac{d}{d\theta}(\cot \theta) = -\csc^2 \theta \] And from our earlier calculation: \[ \frac{d\theta}{dx} = \frac{1}{\frac{dx}{d\theta}} = -\frac{1}{a \sin \theta} \] Thus, \[ \frac{d^2y}{dx^2} = -\frac{b}{a} (-\csc^2 \theta) \left(-\frac{1}{a \sin \theta}\right) = \frac{b \csc^2 \theta}{a^2 \sin \theta} \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\frac{b}{a^2} \cos^2 \theta \] ### Step 4: Differentiate \( \frac{d^2y}{dx^2} \) to find \( \frac{d^3y}{dx^3} \) Now, we differentiate \( \frac{d^2y}{dx^2} \): \[ \frac{d^3y}{dx^3} = \frac{d}{dx}\left(-\frac{b}{a^2} \cos^2 \theta\right) = -\frac{b}{a^2} \cdot 2 \cos \theta \cdot \frac{d\cos \theta}{d\theta} \cdot \frac{d\theta}{dx} \] Using \( \frac{d\cos \theta}{d\theta} = -\sin \theta \): \[ \frac{d^3y}{dx^3} = -\frac{b}{a^2} \cdot 2 \cos \theta (-\sin \theta) \left(-\frac{1}{a \sin \theta}\right) \] This simplifies to: \[ \frac{d^3y}{dx^3} = \frac{2b \cos^2 \theta}{a^3} \] ### Final Result Thus, the third derivative \( \frac{d^3y}{dx^3} \) is: \[ \frac{d^3y}{dx^3} = -\frac{3b \cos^4 \theta \cot \theta}{a^3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3) at theta=0.

If x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3) at theta=0.

If x=acostheta,y=bsintheta, then prove that (d^3y)/(dx^3)=(3b)/(a^3)cos e c^4thetacotthetadot

If x=acostheta,y=bsintheta, then prove that (d^3y)/(dx^3)=(3b)/(a^3)cos e c^4thetacotthetadot

If x=acostheta,y=bsintheta, then prove that (d^3y)/(dx^3)=(3b)/(a^3)cos e c^4thetacotthetadot

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If x=acostheta , y=bsintheta , show that (d^2y)/(dx^2)=-(b^4)/(a^2y^3) .

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |