Home
Class 12
MATHS
If y=sin^(2)alpha+cos^(2)(alpha+beta)+2s...

If `y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta)`, then `(d^(3)y)/(dalpha^(3))`, is

A

`(sin^(3)(alpha+beta))/(cosalpha)`

B

`cos(alpha+3beta)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the third derivative of the function \( y \) with respect to \( \alpha \). The function is given as: \[ y = \sin^2 \alpha + \cos^2(\alpha + \beta) + 2 \sin \alpha \sin \beta \cos(\alpha + \beta) \] ### Step 1: Simplify the expression for \( y \) Using the Pythagorean identity, we know that: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Thus, we can rewrite \( y \) as: \[ y = 1 + \cos^2(\alpha + \beta) + 2 \sin \alpha \sin \beta \cos(\alpha + \beta) \] ### Step 2: Use the product-to-sum identities The term \( 2 \sin \alpha \sin \beta \) can be rewritten using the product-to-sum identities: \[ 2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta) \] So, we can express \( y \) as: \[ y = 1 + \cos^2(\alpha + \beta) + \cos(\alpha - \beta) - \cos(\alpha + \beta) \] ### Step 3: Differentiate \( y \) with respect to \( \alpha \) Now we differentiate \( y \) with respect to \( \alpha \): 1. Differentiate \( \cos^2(\alpha + \beta) \) using the chain rule: \[ \frac{d}{d\alpha} \cos^2(\alpha + \beta) = 2 \cos(\alpha + \beta)(-\sin(\alpha + \beta)) \] 2. Differentiate \( \cos(\alpha - \beta) \): \[ \frac{d}{d\alpha} \cos(\alpha - \beta) = -\sin(\alpha - \beta) \] 3. Differentiate \( -\cos(\alpha + \beta) \): \[ \frac{d}{d\alpha} (-\cos(\alpha + \beta)) = \sin(\alpha + \beta) \] Putting it all together, we have: \[ \frac{dy}{d\alpha} = 0 - 2 \cos(\alpha + \beta) \sin(\alpha + \beta) - \sin(\alpha - \beta) + \sin(\alpha + \beta) \] ### Step 4: Simplify \( \frac{dy}{d\alpha} \) Combining the terms, we get: \[ \frac{dy}{d\alpha} = -2 \cos(\alpha + \beta) \sin(\alpha + \beta) + \sin(\alpha + \beta) - \sin(\alpha - \beta) \] ### Step 5: Differentiate again to find \( \frac{d^2y}{d\alpha^2} \) Now we differentiate \( \frac{dy}{d\alpha} \): 1. Differentiate \( -2 \cos(\alpha + \beta) \sin(\alpha + \beta) \) using the product rule. 2. Differentiate \( \sin(\alpha + \beta) \) and \( -\sin(\alpha - \beta) \). After differentiating and simplifying, we will find \( \frac{d^2y}{d\alpha^2} \). ### Step 6: Differentiate again to find \( \frac{d^3y}{d\alpha^3} \) Finally, we differentiate \( \frac{d^2y}{d\alpha^2} \) to find \( \frac{d^3y}{d\alpha^3} \). ### Final Result After performing the calculations, we find that: \[ \frac{d^3y}{d\alpha^3} = 0 \] Thus, the answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin betacos(alpha+beta) then (d^(3)y)/(dalpha^(3))=?

Simplify 2sin^2beta+4cos(alpha+beta)sinalphasinbeta+cos2(alpha+beta)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |