Home
Class 12
MATHS
If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(...

If `f(x)=(x+1)tan^(-1)(e^(-2x))`, then f'(0) is

A

`(pi)/(2)+1`

B

`(pi)/(4)-1`

C

`(pi)/(6)+5`

D

`(pi)/(4)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \( f(x) = (x + 1) \tan^{-1}(e^{-2x}) \), we will follow these steps: ### Step 1: Differentiate \( f(x) \) We will use the product rule for differentiation, which states that if \( u(x) \) and \( v(x) \) are functions of \( x \), then: \[ (uv)' = u'v + uv' \] In our case, let: - \( u(x) = x + 1 \) - \( v(x) = \tan^{-1}(e^{-2x}) \) Now we need to find \( u' \) and \( v' \). ### Step 2: Find \( u' \) \[ u' = \frac{d}{dx}(x + 1) = 1 \] ### Step 3: Find \( v' \) To differentiate \( v(x) = \tan^{-1}(e^{-2x}) \), we apply the chain rule: \[ v' = \frac{1}{1 + (e^{-2x})^2} \cdot \frac{d}{dx}(e^{-2x}) \] Now, differentiate \( e^{-2x} \): \[ \frac{d}{dx}(e^{-2x}) = e^{-2x} \cdot (-2) = -2e^{-2x} \] Thus, \[ v' = \frac{-2e^{-2x}}{1 + e^{-4x}} \] ### Step 4: Apply the product rule Now we can substitute \( u' \), \( v \), \( u \), and \( v' \) into the product rule: \[ f'(x) = u'v + uv' = 1 \cdot \tan^{-1}(e^{-2x}) + (x + 1) \cdot \left(\frac{-2e^{-2x}}{1 + e^{-4x}}\right) \] This simplifies to: \[ f'(x) = \tan^{-1}(e^{-2x}) - \frac{2(x + 1)e^{-2x}}{1 + e^{-4x}} \] ### Step 5: Evaluate \( f'(0) \) Now we need to evaluate \( f'(0) \): \[ f'(0) = \tan^{-1}(e^{-2 \cdot 0}) - \frac{2(0 + 1)e^{-2 \cdot 0}}{1 + e^{-4 \cdot 0}} \] This simplifies to: \[ f'(0) = \tan^{-1}(1) - \frac{2 \cdot 1 \cdot 1}{1 + 1} \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \) and \( e^0 = 1 \): \[ f'(0) = \frac{\pi}{4} - \frac{2}{2} = \frac{\pi}{4} - 1 \] ### Final Answer Thus, the value of \( f'(0) \) is: \[ \boxed{\frac{\pi}{4} - 1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

If f(x)=e^(1-x) then f(x) is

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))) , then sum_(r = 0)^(9) f(r ) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |