Home
Class 12
MATHS
If y=sin^(-1)((sinalphasinx))/(1-cos alp...

If `y=sin^(-1)((sinalphasinx))/(1-cos alphasinx)`, then y'(0), is

A

1

B

`2tanalpha`

C

`(1//2)tanalpha`

D

`sinalpha`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( y'(0) \) for the given function \[ y = \sin^{-1}\left(\frac{\sin \alpha \sin x}{1 - \cos \alpha \sin x}\right), \] we will differentiate \( y \) with respect to \( x \) and then evaluate the derivative at \( x = 0 \). ### Step 1: Differentiate \( y \) Using the chain rule and the quotient rule, we have: \[ y' = \frac{d}{dx}\left(\sin^{-1}(u)\right) \quad \text{where } u = \frac{\sin \alpha \sin x}{1 - \cos \alpha \sin x}. \] The derivative of \( \sin^{-1}(u) \) is given by \[ \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}. \] ### Step 2: Find \( \frac{du}{dx} \) Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 - \cos \alpha \sin x)(\sin \alpha \cos x) - (\sin \alpha \sin x)(-\cos \alpha \cos x)}{(1 - \cos \alpha \sin x)^2}. \] This simplifies to: \[ \frac{du}{dx} = \frac{\sin \alpha \cos x (1 - \cos \alpha \sin x) + \sin \alpha \sin x \cos \alpha \cos x}{(1 - \cos \alpha \sin x)^2}. \] ### Step 3: Substitute \( u \) and \( \frac{du}{dx} \) into \( y' \) Now substituting \( u \) and \( \frac{du}{dx} \) into the expression for \( y' \): \[ y' = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}. \] ### Step 4: Evaluate \( y'(0) \) At \( x = 0 \): 1. Calculate \( u \): \[ u = \frac{\sin \alpha \sin 0}{1 - \cos \alpha \sin 0} = 0. \] 2. Calculate \( \sqrt{1 - u^2} \): \[ \sqrt{1 - 0^2} = 1. \] 3. Calculate \( \frac{du}{dx} \) at \( x = 0 \): Substituting \( x = 0 \) into \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{\sin \alpha \cos 0 (1 - \cos \alpha \cdot 0) + \sin \alpha \sin 0 \cos \alpha \cos 0}{(1 - \cos \alpha \cdot 0)^2} = \frac{\sin \alpha \cdot 1 \cdot 1 + 0}{1^2} = \sin \alpha. \] ### Step 5: Final Calculation of \( y'(0) \) Now substituting everything back into \( y' \): \[ y'(0) = \frac{1}{1} \cdot \sin \alpha = \sin \alpha. \] Thus, the final result is: \[ y'(0) = \sin \alpha. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)(sinalphasinx)/(1-cosalphasinx)) , then y'(0) is equal to

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

y=tan^(-1)(cos x/(1+sin x))

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to:

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If y=cos ^(-1)sin x , then dy/dx

If y=sin^(-1)(cos x)+cos^(-1)(sin x) , prove that (dy)/(dx)=-2

Evaluate : int_0^pix/(1+sinalphasinx)dx

Evaluate : int_0^pix/(1+sinalphasinx)dx

"If "e^(sin(x^(2)+y^(2)))=tan""(y^(2))/(4)+sin^(-1)x," then y'(0) can be "

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |