Home
Class 12
MATHS
If a curve is given by x= a cos t + b/2 ...

If a curve is given by `x= a cos t + b/2 cos2t` and `y= asint + b/2 sin 2t`, then the points for which `(d^2 y)/dx^2 = 0`, are given by

A

`sint=(2a^(2)+b^(2))/(3ab)`

B

`cost=-(a^(2)+2b^(2))/(3ab)`

C

`tant=a//b`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the points for which \(\frac{d^2y}{dx^2} = 0\) for the given parametric equations: \[ x = a \cos t + \frac{b}{2} \cos 2t \] \[ y = a \sin t + \frac{b}{2} \sin 2t \] ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) We start by finding the first derivatives of \(x\) and \(y\): \[ \frac{dx}{dt} = -a \sin t - b \sin 2t \] \[ \frac{dy}{dt} = a \cos t + b \cos 2t \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule, we can express \(\frac{dy}{dx}\) in terms of \(t\): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a \cos t + b \cos 2t}{-a \sin t - b \sin 2t} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) To find \(\frac{d^2y}{dx^2}\), we need to differentiate \(\frac{dy}{dx}\) with respect to \(t\): \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] First, we differentiate \(\frac{dy}{dx}\): Using the quotient rule: \[ \frac{d}{dt}\left(\frac{a \cos t + b \cos 2t}{-a \sin t - b \sin 2t}\right) = \frac{(-a \sin t - 2b \sin 2t)(-a \sin t - b \sin 2t) - (a \cos t + b \cos 2t)(-a \cos t - 2b \cos 2t)}{(-a \sin t - b \sin 2t)^2} \] ### Step 4: Simplify \(\frac{d^2y}{dx^2}\) Now we will simplify the expression obtained in Step 3. After simplification, we will have: \[ \frac{d^2y}{dx^2} = \frac{a^2 + 2b^2 + 3ab \cos t}{(a \sin t + b \sin 2t)^3} \] ### Step 5: Set \(\frac{d^2y}{dx^2} = 0\) For \(\frac{d^2y}{dx^2} = 0\), the numerator must be zero: \[ a^2 + 2b^2 + 3ab \cos t = 0 \] ### Step 6: Solve for \(\cos t\) Rearranging gives: \[ 3ab \cos t = - (a^2 + 2b^2) \] Thus, \[ \cos t = -\frac{a^2 + 2b^2}{3ab} \] ### Final Result The points for which \(\frac{d^2y}{dx^2} = 0\) are given by: \[ \cos t = -\frac{a^2 + 2b^2}{3ab} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

The curve is given by x = cos 2t, y = sin t represents

x=a cos t, y=b sin t find dy/dx

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

x=a(cos t + log tan (t/2)), y =a sin t

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

x = "sin" t, y = "cos" 2t

The curve represented by x=2(cost+sint) and y = 5(cos t-sin t ) is

The curve represented by x=2(cost+sint) and y = 5(cos t-sin t ) is

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

x=2 cos^2 t, y= 6 sin ^2 t find dy/dx

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |