Home
Class 12
MATHS
If x = e^(tan^(-1))((y-x^2)/x^2) then (d...

If `x = e^(tan^(-1))((y-x^2)/x^2)` then `(dy)/(dx)=`

A

`2x{1+tan(log_(e)x)}+xsec^(2)(log_(e)x)`

B

`x{1+tan(log_(e)x)}+sec^(2)(log_(e)x)`

C

`2x{1+tan(log_(e)x)}+x^(2)sec^(2)(log_(e)x)`

D

`2x{1+tan(log_(e)x)}+sec^(2)(log_(e)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = e^{\tan^{-1}\left(\frac{y - x^2}{x^2}\right)} \) and we need to find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start with the equation: \[ x = e^{\tan^{-1}\left(\frac{y - x^2}{x^2}\right)} \] Taking the natural logarithm on both sides gives: \[ \ln x = \tan^{-1}\left(\frac{y - x^2}{x^2}\right) \] ### Step 2: Apply the tangent function To eliminate the arctangent, we apply the tangent function to both sides: \[ \tan(\ln x) = \frac{y - x^2}{x^2} \] ### Step 3: Rearranging the equation Rearranging the equation to solve for \( y \): \[ y - x^2 = x^2 \tan(\ln x) \] Thus, \[ y = x^2 \tan(\ln x) + x^2 \] ### Step 4: Differentiate both sides with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[x^2 \tan(\ln x) + x^2] \] Using the product rule on the first term \( x^2 \tan(\ln x) \): \[ \frac{dy}{dx} = \frac{d}{dx}[x^2] \cdot \tan(\ln x) + x^2 \cdot \frac{d}{dx}[\tan(\ln x)] + \frac{d}{dx}[x^2] \] ### Step 5: Calculate the derivatives 1. The derivative of \( x^2 \) is \( 2x \). 2. For \( \tan(\ln x) \), we use the chain rule: \[ \frac{d}{dx}[\tan(\ln x)] = \sec^2(\ln x) \cdot \frac{d}{dx}[\ln x] = \sec^2(\ln x) \cdot \frac{1}{x} \] ### Step 6: Substitute back into the derivative equation Substituting these derivatives back into our equation: \[ \frac{dy}{dx} = 2x \tan(\ln x) + x^2 \cdot \sec^2(\ln x) \cdot \frac{1}{x} + 2x \] This simplifies to: \[ \frac{dy}{dx} = 2x \tan(\ln x) + x \sec^2(\ln x) + 2x \] ### Step 7: Factor the expression We can factor out \( 2x \) from the first and last terms: \[ \frac{dy}{dx} = 2x(1 + \tan(\ln x)) + x \sec^2(\ln x) \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2x(1 + \tan(\ln x)) + x \sec^2(\ln x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

y=log_e(tan^(- 1)sqrt(1+x^2)) then dy/dx is

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y) .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |