Home
Class 12
MATHS
If siny+e^(-xcosy)=e, then (dy)/(dx) at ...

If `siny+e^(-xcosy)=e`, then `(dy)/(dx)` at `(1,pi)`, is

A

`siny`

B

`-xcosy`

C

e

D

`siny-xcosy`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \( \sin y + e^{-x \cos y} = e \) at the point \((1, \pi)\), we will follow these steps: ### Step 1: Differentiate both sides of the equation We start with the given equation: \[ \sin y + e^{-x \cos y} = e \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(\sin y) + \frac{d}{dx}(e^{-x \cos y}) = \frac{d}{dx}(e) \] Since \(e\) is a constant, its derivative is \(0\): \[ \frac{d}{dx}(\sin y) + \frac{d}{dx}(e^{-x \cos y}) = 0 \] ### Step 2: Apply the chain rule and product rule Using the chain rule on \(\sin y\): \[ \cos y \frac{dy}{dx} \] For the term \(e^{-x \cos y}\), we apply the chain rule and product rule: \[ \frac{d}{dx}(e^{-x \cos y}) = e^{-x \cos y} \cdot \frac{d}{dx}(-x \cos y) \] Now, applying the product rule to \(-x \cos y\): \[ \frac{d}{dx}(-x \cos y) = -\cos y - x \frac{d}{dx}(\cos y) = -\cos y + x \sin y \frac{dy}{dx} \] Thus, we have: \[ \frac{d}{dx}(e^{-x \cos y}) = e^{-x \cos y} \left(-\cos y + x \sin y \frac{dy}{dx}\right) \] ### Step 3: Combine the derivatives Now substituting back into our differentiated equation: \[ \cos y \frac{dy}{dx} + e^{-x \cos y} \left(-\cos y + x \sin y \frac{dy}{dx}\right) = 0 \] Expanding this gives: \[ \cos y \frac{dy}{dx} - e^{-x \cos y} \cos y + e^{-x \cos y} x \sin y \frac{dy}{dx} = 0 \] ### Step 4: Factor out \(\frac{dy}{dx}\) Rearranging the equation: \[ \left(\cos y + e^{-x \cos y} x \sin y\right) \frac{dy}{dx} = e^{-x \cos y} \cos y \] Thus, \[ \frac{dy}{dx} = \frac{e^{-x \cos y} \cos y}{\cos y + e^{-x \cos y} x \sin y} \] ### Step 5: Substitute the point \((1, \pi)\) Now we substitute \(x = 1\) and \(y = \pi\): - \(\cos \pi = -1\) - \(\sin \pi = 0\) - \(e^{-1 \cdot (-1)} = e^1 = e\) Substituting these values into our equation: \[ \frac{dy}{dx} = \frac{e \cdot (-1)}{-1 + e \cdot 1 \cdot 0} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-e}{-1} = e \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at the point \((1, \pi)\) is: \[ \frac{dy}{dx} = e \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y = e^(-x) , then (dy)/(dx) is

If y=e^(x) then (dy)/(dx)

If y=xcosy+ycosx, then find (dy)/(dx)

Find (dy)/(dx) of e^x(1+x)

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If (cosx)^(y)=(siny)^(x), then find (dy)/(dx) .

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If xlog_(e)y+ylog_(e)x=5 , then (dy)/(dx) is

If (cosx)^y=(siny)^x , find (dy)/(dx) .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Exercise
  1. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  2. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  3. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  4. If f(1)=1,f^(prime)(1)=2, then write the value of (lim)(x->1)(sqrt(f(x...

    Text Solution

    |

  5. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  6. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  9. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  10. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  11. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |

  12. If y=ce^(x//(x-a)), then (dy)/(dx) equals

    Text Solution

    |

  13. If y=sin^(-1)((sinalphasinx))/(1-cos alphasinx), then y'(0), is

    Text Solution

    |

  14. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  15. If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2...

    Text Solution

    |

  16. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

    Text Solution

    |

  18. (d)/(dx)[sin^(2)cot^(-1){sqrt((1-x)/(1+x)}] is equal to

    Text Solution

    |

  19. If siny+e^(-xcosy)=e, then (dy)/(dx) at (1,pi), is

    Text Solution

    |

  20. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |