Home
Class 12
MATHS
The period of f(x)=(1)/(2){(| sinx|)/...

The period of
`f(x)=(1)/(2){(| sinx|)/(cos x)-(|cosx|)/(sinx)}`, is

A

Statement-1 is True, Statement-2 is True, statement-2 is a correct explanation for the statement-1 .

B

Statement-1 is True, Statement-2 is True, statement-2 is not a correct explanation for the statement-1 .

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False , Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \frac{1}{2} \left( \frac{|\sin x|}{\cos x} - \frac{|\cos x|}{\sin x} \right) \), we will analyze the components of the function. ### Step 1: Identify the periods of the components 1. The function \( |\sin x| \) has a period of \( \pi \) because it repeats every \( \pi \) radians. 2. The function \( |\cos x| \) also has a period of \( \pi \) for the same reason.

To find the period of the function \( f(x) = \frac{1}{2} \left( \frac{|\sin x|}{\cos x} - \frac{|\cos x|}{\sin x} \right) \), we will analyze the components of the function. ### Step 1: Identify the periods of the components 1. The function \( |\sin x| \) has a period of \( \pi \) because it repeats every \( \pi \) radians. 2. The function \( |\cos x| \) also has a period of \( \pi \) for the same reason.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Find the range of f(x)=(1)/(|sinx|)+(1)/(|cosx|)

The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) is

The period of the function f(x)=|sinx|-|cosx| , is

Find the period of f(x)=abs(sinx)+abs(cosx) .

The function f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4)) is defined if x belongs to (where [.] represents the greatest integer function)

The function f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4)) is defined if x belongs to (where [.] represents the greatest integer function)

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =