Home
Class 12
MATHS
If C is the mid point of AB and P is any...

If C is the mid point of AB and P is any point outside AB then (A) `vec(PA)+vec(PB)+vec(PC)=0` (B) `vec(PA)+vec(PB)+2vec(PC)=vec0` (C) `vec(PA)+vec(PB)=vec(PC)` (D) `vec(PA)+vec(PB)=2vec(PC)`

A

`P vec(A) + P vec(B) + P vec(C ) =vec(0)`

B

`P vec(A)+P vec(B) + 2P vec(C ) =vec(0)`

C

`P vec(A) +P vec(B)=P vec(C )`

D

`P vec(A) + P vec(B)=2P vec(C )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors involved and their relationships based on the given conditions. Let's denote the points as follows: - Let \( A \) and \( B \) be two points in space. - Let \( C \) be the midpoint of segment \( AB \). - Let \( P \) be a point outside the line segment \( AB \). We need to find the correct relationship among the vectors \( \vec{PA} \), \( \vec{PB} \), and \( \vec{PC} \). ### Step-by-step Solution: 1. **Identify the Midpoint**: Since \( C \) is the midpoint of \( AB \), we can express the position vector of \( C \) as: \[ \vec{C} = \frac{\vec{A} + \vec{B}}{2} \] 2. **Express the Vectors**: The vectors from point \( P \) to points \( A \), \( B \), and \( C \) can be expressed as: \[ \vec{PA} = \vec{A} - \vec{P} \] \[ \vec{PB} = \vec{B} - \vec{P} \] \[ \vec{PC} = \vec{C} - \vec{P} \] 3. **Using Triangle Law of Addition**: In triangle \( PAC \): \[ \vec{PA} + \vec{AC} = \vec{PC} \] Here, \( \vec{AC} = \vec{C} - \vec{A} \). Substituting for \( \vec{C} \): \[ \vec{AC} = \left(\frac{\vec{A} + \vec{B}}{2}\right) - \vec{A} = \frac{\vec{B} - \vec{A}}{2} \] Thus, we have: \[ \vec{PA} + \frac{\vec{B} - \vec{A}}{2} = \vec{PC} \] 4. **In triangle \( PBC \)**: Similarly, we can write: \[ \vec{PB} + \vec{BC} = \vec{PC} \] Where \( \vec{BC} = \vec{C} - \vec{B} \): \[ \vec{BC} = \left(\frac{\vec{A} + \vec{B}}{2}\right) - \vec{B} = \frac{\vec{A} - \vec{B}}{2} \] Thus: \[ \vec{PB} + \frac{\vec{A} - \vec{B}}{2} = \vec{PC} \] 5. **Combining the Equations**: Now, we can combine both equations: \[ \vec{PA} + \frac{\vec{B} - \vec{A}}{2} + \vec{PB} + \frac{\vec{A} - \vec{B}}{2} = 2\vec{PC} \] Simplifying this, we find: \[ \vec{PA} + \vec{PB} + \frac{\vec{B} - \vec{A} + \vec{A} - \vec{B}}{2} = 2\vec{PC} \] The terms \( \vec{B} - \vec{A} \) and \( \vec{A} - \vec{B} \) cancel each other out, leading to: \[ \vec{PA} + \vec{PB} = 2\vec{PC} \] ### Conclusion: Thus, the correct relationship is: \[ \vec{PA} + \vec{PB} = 2\vec{PC} \] The answer is option (D).

To solve the problem, we need to analyze the vectors involved and their relationships based on the given conditions. Let's denote the points as follows: - Let \( A \) and \( B \) be two points in space. - Let \( C \) be the midpoint of segment \( AB \). - Let \( P \) be a point outside the line segment \( AB \). We need to find the correct relationship among the vectors \( \vec{PA} \), \( \vec{PB} \), and \( \vec{PC} \). ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

In triangle ABC (Figure), which of the following is not true: (A) vec(AB)+ vec(BC)+ vec(CA)=vec0 (B) vec(AB)+ vec(BC)- vec(AC) =vec0 (C) vec(AB)+ vec(BC)- vec(CA)=vec0 (D) vec(AB)+ vec(CB)+ vec(CA)=vec0

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If the position vector of these points are vec(a) -2vec(b)+3 vec(c ), 2 vec(a)+3vec(b)-4 vec( c) ,-7 vec(b) + 10 vec(c ) , then the three points are

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If C is the mid point of AB and P is any point outside AB then (A) vec...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |