Home
Class 12
MATHS
Let vec(AD) be the angle bisector of the...

Let `vec(AD)` be the angle bisector of the angle A of `DeltaABC`, then `vec(AD) = alphavec(AB) + betavec(AC)`, where

A

`alpha= (|vec(AB)|)/(|vec(AB)|+|vec(AC)|),beta=(|vec(AC)|)/(|vec(AB)|+|vec(AC)|)`

B

`alpha= (|vec(AB)|+|vec(AC)|)/(|vec(AB)|),beta=(|vec(AB)|+|vec(AC)|)/(|vec(AC)|)`

C

`alpha= (|vec(AC)|)/(|vec(AB)|+|vec(AC)|),beta=(|vec(AB)|)/(|vec(AB)|+|vec(AC)|)`

D

`alpha= (|vec(AB)|)/(|vec(AC)|),beta=(|vec(AC)|)/(|vec(AB)|)`

Text Solution

Verified by Experts

The correct Answer is:
C

Clearly, AD divides BC in the ratio AB : AC.
`therefore vec(AD)=(|vec(AB)|vec(AC)+|vec(AC)|vec(AB))/(|vec(AB)|+|vec(AC)|)`
`rArrvec(AD)=alpha vec(AB)+beta vec(AC),` where
`alpha= (|vec(AC)|)/(|vec(AB)|+|vec(AC)|) and beta=(|vec(AB)|)/(|vec(AB)|+|vec(AC)|)`
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Let vec(A)D be the angle bisector of angle A" of " Delta ABC such that vec(A)D=alpha vec(A)B+beta vec(A)C, then

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

If vec a=7 hat i-4 hat j-4 hat k and vec b=-2 hat i- hat j+2 hat k , determine vector vec c along the internal bisector of the angle between of the angle between vectors vec a and vec b such that | vec c| =5sqrt(6)

E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let vec(BE)=4vec(EC) and vec(CF)=4vec(FD) . If the line EF meets the diagonal AC in G, then vec(AG)=lambda vec(AC) , where lambda is equal to :

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + vec(FA)=

In the given figure, AD is altitude and AE is bisector of angle BAC of DeltaABC . Show that DeltaDAE=(1)/(2)(angleB-angleC)

What is the angle be vec(a) xx vec(b) and vec(b) xx vec(a) ?

Let triangle ABC be an isosceles with AB=AC. Suppose that the angle bisector of its angle B meets the side AC at a point D and that BC=BD+AD . Measure of the angle A in degrees, is :

If AD, BE and CF be the median of a /_\ABC , prove that vec(AD)+vec(BE)+vec(CF) =0

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Let vec(AD) be the angle bisector of the angle A of DeltaABC, then vec...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |